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An	introduction	to	analysis	wade.

If	ϕ	is	the	angle	between	(x,	y)	and	B(x,	y)	then	by	(2)	and	what	we	just	proved,	cos	ϕ	=	(x,	y)	·	B(x,	y)	(x2	+	y	2	)	cos	θ	=	=	cos	θ.	4	b)	E	=	{(x,	y)	:	0	≤	y	≤	1,	y	≤	x	≤	1}	=	{(x,	y)	:	0	≤	x	≤	1,	0	≤	y	≤	x},	hence	by	Fubini’s	Theorem,	Z	1	Z	0	Z	1	1	sin(x2	)	dx	dy	=	y	Z	0	x	Z	sin(x2	)	dy	dx	=	0	1	x	sin(x2	)	dx	=	0	1	−	cos(1)	.	10.5.4.	a)	If	E	is	connected	in	R
then	E	is	an	interval,	hence	E	o	is	either	empty	or	an	interval,	hence	connected	by	definition	or	Theorem	10.56.	Notice	that	x1	=	1	=	y1	.	Fix	j	≥	n.	By	the	Heine-Borel	Theorem,	xk	is	bounded,	hence	(by	Bolzano–Weierstrass)	has	a	convergent	subsequence.	Thus	the	trace	looks	like	a	sine	wave	traced	on	the	parabolic	cylinder	y	=	x2	.	[0,	π]∪[2π,	3π]∪.
c)	limx→0	log(x/	sin	x)/x2	=	limx→0	(sin	x	−	x	cos	x)/(2x2	sin	x)	=	limx→0	x	sin	x/(2x2	cos	x	+	4x	sin	x)	=	limx→0	sin	x/(2x	cos	x	+	4	sin	x)	=	limx→0	cos	x/(6	cos	x	−	2x	sin	x)	=	1/6.	,	QN	such	that	ÃN	!0	[	∂E	∪	E0	⊂	U	:=	Qk	k=1	PN	and	k=1	|Qk	|	<	²/(4C),	where	|f	(x)	≤	C	for	x	∈	E.	2.2.6.	By	the	Density	of	Rationals,	there	is	an	rn	between	x	+	1/n	and	x
for	each	n	∈	N.	But	by	the	Fundamental	Theorem	of	Calculus	and	the	fact	that	f	(a)	=	0,	we	have	Z	x	f	0	(t)	dt	=	f	(x)	−	f	(a)	=	f	(x)	a	as	required.	Therefore,	f	is	bounded	on	I	⊆	[a,	b].	Pn	Pn	6.4.8.	By	a	sum	angle	formula	and	telescoping,	we	see	that	2	sin(x/2)	k=1	cos(kx)	=	k=1	(sin((k	−	1/2)x)	−	sin((k	+	1/2)x))	=	sin(x/2)	−	sin((n	+	1/2)x).	It	follows
that	∂(y,	z)	∂(z,	x)	+	(yu	ut	+	yv	vt	)	∂(u,	v)	∂(u,	v)	∂(x,	y)	+	(zu	ut	+	zv	vt	)	∂(u,	v)	é	ù	é	ù	xu	yu	zu	xv	yv	zv	=	ut	det	ë	xu	yu	zu	û	+	vt	det	ë	xu	yu	zu	û	=	0.	b)	By	hypothesis,	given	ε	>	0	there	is	an	N	∈	N	such	that	n	≥	N	implies	xn	>	1/2	and	|xn	−	1|	<	ε/4.	Hence	by	the	Mean	Value	Theorem,	|f	(x	+	h)	−	f	(x	−	h)|	≤	|f	(x	+	h)	−	f	(x)|	+	|f	(x)	−	f	(x	−	h)|	=	|h|	|f
0	(c1	)|	+	|h|	|f	0	(c2	)|	≤	2M	|h|	for	some	cj	’s	and	all	h	∈	R.	Hence	P	=	cos	y,	Q	=	0,	R	=	xy,	and	(P,	Q,	R)	◦	φ	=	(cos(cos	t/	2),	0,	cos2	t/2).	3.4.0	a)	False.	Thus	bk	(f	)	=	4/(kπ)	when	k	is	odd	and	0	when	k	is	even.	b)	Repeat	the	proof	of	Theorem	3.6,	replacing	the	absolute	value	by	the	norm	sign.	10.5.7.	Suppose	H	is	compact.	Then	U	=	E	and	V	=	X	\	E
are	nonempty	open	sets,	U	∩	V	=	∅,	and	X	=	U	∪	V	.	Let	ε	>	0	and	set	δ	=	ε/M	.	Hence,	2	|ak	|	≤	|ak	|	for	large	k,	and	it	follows	from	the	Comparison	Theorem	that	k=1	ak	converges	absolutely.	And,	if	y	=	−1	then	f	(x,	y)	=	x3	−	3x	+	1	has	critical	points	x	=	±1	which	correspond	to	extreme	points	of	H.	−2	40	Copyright	©	2010	Pearson	Education,	Inc.
c)	The	closure	is	R,	the	interior	is	R,	the	boundary	is	∅.	∂u	∂v	∂v	∂u	E	2	G2	−	F	2	=	142	Copyright	©	2010	Pearson	Education,	Inc.	Thus	f	is	absolutely	integrable	on	(a,	b)	by	the	Comparison	Theorem.	13.5.9.	a)	By	hypothesis,	F	=	(fx	,	fy	).	g	◦	φ(t)	kφ	(t)k	dt	=	τ	(Jk0	)	∪N	τ	(Jk0	)	k=1	Since	τ	is	1-1,	τ	(Jk	)	\	τ	(Jk0	)	consists	of	two	points,	so	this	last
integral	is	unchanged	if	Jk0	is	replaced	by	Jk	.	b)	If	the	Riemann	sums	converge	to	I(f	),	then	there	is	a	partition	P	such	that	|S(f,	P,	tj	)|	<	|I(f	)|	+	1	for	all	choices	of	tj	∈	[xj−1	,	xj	].	3xn−1	+	6xn−1	+	4	3x2n−1	+	6xn−1	+	4	Using	an	initial	guess	of	x0	=	0,	we	obtain	x1	=	−.25,	x2	=	−.313953	.	√	c)	The	inequality	is	equivalent	to	n2	+	1	>	500.	By
definition	and	Exercise	5.3.7d,	L(w)	=	x	+	y	=	L(s)	+	L(t)	=	L(st).	Then	x	<	x	−	1	so	0	<	−1,	i.e.,	this	case	is	empty.	b)	By	definition,	a	and	b	are	parallel	if	and	only	if	a	=	tb,	i.e.,	|a	·	b|	=	|t|	kak2	=	kak	kbk.	Then	A	and	B	are	closed,	A	∩	B	=	∅,	but	dist	(A,	B)	=	0	because	1/x	→	0	as	x	→	∞.	f	0	(0)	π	(g	−1	)0	(2)	=	1	1	=	.	b)	By	vector	algebra	and	the
Cauchy-Schwarz	inequality,	|x·y−x·z|	=	|x·(y−z)|	≤	kxk	ky−zk	<	2·(3+4)	=	14.	Conversely,	suppose	xn	∈	E	\	{a}	and	xn	→	a	as	n	→	∞.	By	Theorem	9.26,	f	−1	(U	)	∩	E	is	relatively	open	in	E.	Therefore,	the	series	converges	by	the	Alternating	Series	Test.	Thus	such	a	vector	has	the	form	(a,	(20	−	8a)/7,	(8	+	a)/7),	a	6=	0.	¯∞	R∞	5.4.2.	a)	If	p	6=	1	then	1
dx/xp	=	x1−p	/(1	−	p)	¯1	.	Thus	f	(x)	≤≤	M1	+·	·	·+MN	=:	M	for	all	x	∈	E	∗	⊃	E.	9.1.8.	a)	If	E	∩	Br	(a)	contains	infinitely	many	points,	then	surely	E	∩	Br	(a)	\	{a}	is	nonempty.	d)	We	cannot	multiply	by	the	denominator	x	−	1	unless	we	consider	its	sign.	b)	This	is	the	set	of	points	on	or	inside	the	ellipse	x2	+	4y	2	=	1.	Since	x	∈	[1,	3]	implies	|3	−	x36	|	≤
3	+	336	and	x3	+	nx66	≥	0	+	n	=	n,	it	follows	that	¯	¯	¯	nx99	+	3	¯	|3	−	x36	|	3	+	336	3	+	336	33	¯	¯	−	x	=	≤	≤	1	implies	e4/N	>	1	and	e4/N	→	1	as	N	→	∞,	given	ε	>	0,	we	can	choose	N	∈	N	so	that	2	0	<	e4/N	−	1	<	ε.	14.1.6.	a)	Since	f	(x)	cos	kx	is	odd,	ak	(f	)	=	0	for	k	=	0,	1,	.	c)	By	hypothesis,	0	<	x1	<	1.	SN	f	(x)	≥	0+·	·	·+fxj	(x)+·	·	·+0	=	1	for	all	x	∈
E.	Hence	we	can	use	(−a,	−b,	c)	for	a	normal	at	the	point	(a,	b,	c).	Therefore,	this	series	converges	by	the	Alternating	Series	Test.	Moreover,	by	the	Monotone	Property,	sup	A,	sup	B	≤	sup	E.	Then	by	the	Approximation	Property,	there	exist	xj	∈	E	such	that	kxj	−	ak	→	0,	i.e.,	such	that	xj	→	a.	10.2.6.	Modify	the	proofs	of	Theorems	3.21	and	3.22,
replacing	the	absolute	value	signs	with	the	metric	ρ.	Thus	Rx√=	y	+	fx	√	and	we	can	set	f	=	0,	P	=	0,	and	g	=	0.	2	2	Case	2.	Fix	x,	y	∈	[xk−1	,	xk	].	If	f	is	differentiable,	then	f	is	continuous	on	[a,	b].	If	α	>	0	then	|x|α	→	0	as	x	→	0.	11.3.4.	a)	If	(x,	y)	6=	(0,	0),	then	by	the	Chain	Rule,	a	normal	to	K	at	(x,	y,	z)	is	given	by	(x/z,	y/z,	−1).	Therefore,	x	is	not	a
cluster	point	of	[a,	b).	By	(8)	in	1.1,	xn	<	²	√	for	n	≥	N	,	i.e.,	xn	→	0	as	n	→	∞.	Hence	(ex	−	1)/x	=	k=0	xk	/(k	+	1)!	for	x	∈	R.	Thus	given	x1	<	x2	,	f	(x1	)	=	lim	gn	(x1	)	≤	lim	gn	(x2	)	=	f	(x2	).	Conversely,	suppose	every	relatively	open	covering	of	H	has	a	finite	subcover.	If	f	(c)	<	0,	then	c	−	a	>	0	and	c	−	b	<	0	imply	that	f	0	(x1	)	<	0	<	f	0	(x2	).	Then	y	=
x	and	x	=	sin	z.	∂q	∂x	∂q	∂y	∂q	∂z	∂q	Hence	by	the	Product	Rule	and	Theorem	11.2,	µ	¶	µ	¶	µ	¶	∂2w	∂	∂F	∂x	∂F	∂	2	x	∂	∂F	∂y	∂F	∂	2	y	∂	∂F	∂z	∂F	∂	2	z	=	+	+	+	+	+	2	2	2	∂p	∂p	∂x	∂p	∂x	∂p	∂p	∂y	∂p	∂y	∂p	∂p	∂z	∂p	∂z	∂p2	2	2	2	∂F	∂	x	∂F	∂	y	∂F	∂	z	=	+	+	∂x	∂p2	∂y	∂p2	∂z	∂p2	µ	¶	µ	¶2	µ	¶2	2	2	2	∂F	∂x	∂	F	∂y	∂	2	F	∂z	+	+	+	∂x2	∂p	∂y	2	∂p	∂z	2	∂p	µ	¶	µ	¶	µ	¶µ	¶	µ	¶µ	¶
2	2	∂	F	∂x	∂y	∂	F	∂x	∂z	∂	2	F	∂y	∂z	+2	+2	+2	.	Thus	the	series	converges	absolutely	on	(−1/e,	1/e).	√	√	d)	Suppose	3	<	a	<	5.	b)	The	ratio	of	successive	terms	of	this	series	is	2k	+	1	4	2	=1−	=1−	.	We	obtain	x	=	1	−	1	−	x,	i.e.,	x2	−	x	=	0.	Since	each	Vα	is	nonempty,	choose	a	point	xα	∈	Vα	for	each	α	∈	A.	2	2	2	Thus	{xn	}	is	decreasing	and	bounded
below.	2.3.8.	a)	This	follows	immediately	from	Exercise	1.2.6.	p	√	b)	By	a),	xn+1	=	(xn	+	yn	)/2	<	2xn	/2	=	xn	.	The	trace	looks	like	a	gull	in	flight	(called	a	cubical	parabola)	traced	in	the	z	=	x	plane.	If	n	≥	N	:=	max{N1	,	N2	}	and	x	∈	E	then	|(f	g)(x)	−	(fn	gn	)(x)|	≤	|f	(x)	−	fn	(x)|	|gn	(x)|	+	|f	(x)|	|g(x)	−	gn	(x)|	0	choose	δ	>	0	so	small	that	x,	y	∈	E	and	|x
−	y|	<	δ	imply	|fN	(x)	−	fN	(y)|	<	²/3.	91	Copyright	©	2010	Pearson	Education,	Inc.	2	(a	+	b)	sin2	ϕ	+	0	13.5.4.	a)	By	Gauss’	Theorem,	ZZ	Z	2	Z	4	Z	Z	1	ω=	2	(yz	+	2y	+	1)	dz	dy	dx	=	2	S	x2	−2	0	(24	−	x2	−	5x4	/4)	dx	=	224/3.	Then	by	Exercise	1.2.5b,	0	<	xn	<	xn+1	.	Therefore,	kf	kH	is	finite	and	attained	by	the	Extreme	Value	Theorem.	Chapter	4	4.1
The	Derivative.	It	follows	from	the	Squeeze	Theorem	that	f	×	g	is	differentiable	and	its	total	derivative	is	T	.	Then	µ	kψu	k2	=	∂x	∂u	¶2	µ	+	∂y	∂u	¶2	µ	+	and	ψu	·	ψv	=	∂z	∂u	¶2	µ	,	kψv	k2	=	∂x	∂v	¶2	µ	+	∂y	∂v	¶2	µ	+	∂z	∂v	¶2	∂x	∂x	∂y	∂y	∂z	∂z	+	+	.	e)	Integrating	by	parts	twice,	Z	∞	Z	Z	b	∞	−st	b	b2	∞	−st	e−st	sin	bt	dt	=	e	cos	bt	dt	=	2	−	2	e	sin	bt	dt	s	0
s	s	0	0	R∞	for	s	>	0.	Hence	by	Theorem	11.15,	g	is	differentiable	on	V	.	Also,	0	≤	s2n+1	−	s2n	=	1/(2n	+	1)	→	0	as	n	→	∞.	2k)/(1	·	3	.	f)	By	Cauchy-Schwarz	and	Remark	8.10,	|x	·	(y	×	z)|	≤	kxk	kyk	kzk	<	1	·	2	·	3	=	6.	(σ,	J)	runs	counterclockwise.	Therefore,	f	is	not	differentiable	at	(0,	0).	Thus	by	induction,	0	<	xn	<	xn+1	for	all	n	∈	N.	Conversely,
suppose	x	∈	f	−1	(f	(A)).	Then	y	=	x2	and	z	=	sin	x.	Let	x	∈	E	and	khk	<	δ.	dx	j=1	n	X	(−1)j−1	xj	dx1	.	But	x	is	negative	on	(−∞,	−6],	so	we	must	use	the	negative	sign.	b)	By	construction,	to	pass	from	Ek−1	to	Ek	we	eliminate	each	point	which	has	a	1	as	the	kth	digit	in	all	of	its	ternary	expansions.	x	−	1	>	0.	dxn	=	n	X	(−1)j−1	Vol	(E).	Let	h	=	αh0	,	α
6=	0,	where	khk	<	δ	and	let	c	∈	L(a;	a	+	h).	Indeed,	0	≤	f	0	(x0	)	≤	0,	i.e.,	f	0	(x0	)	=	0.	c)	Let	ε	>	0	and	choose	(by	Archimedes)	an	N1	∈	N	such	that	k	>	N1	implies	1/k	<	ε/2.	b)	Clearly,	kf	k1	≥	0	and	kf	k1	=	0	if	and	only	if	f	=	0	(see	Exercise	5.1.4b).	2	Next,	notice	by	part	a)	that	f	0	(x)	=	(2/x3	)e−1/x	for	x	6=	0	and	f	0	(0)	=	0.	a)	Suppose	E	is	convex
but	not	connected.	4x2	−	1	<	0.	Hence	D(f	+	g)(x,	y)	=	[	2x	+	1	2y	−	1	]	b)	Df	(x,	y)	=	[	y	and	D(f	·	g)(x,	y)	=	[	3x2	−	2xy	+	y	2	2xy	−	x2	−	3y	2	]	.	Let	²	>	0	and	choose	a	grid	G	=	P	×	Q	on	R,	where	P	=	{a0	,	.	Since	differentiability	implies	continuity,	it	follows	from	the	Inverse	Function	Theorem	that	f	−1	is	differentiable	on	f	(I),	and	(f	−1	)0	(x)	=	1/f	0
(f	−1	(x)).	8.4.2.	a)	This	is	the	set	of	points	on	or	inside	the	ellipse	x2	+	4y	2	=	1.	Then	there	is	a	δ0	>	0	such	that	0	<	c	−	x	<	δ0	implies	F	(c)	−	F	(x)	>	ε0	/2.	It	follows	that	fxj	(0)	=	0	for	j	=	1,	.	Then	f	satisfies	the	condition	for	α	=	1	but	fx	(0,	0)	=	limh→0	|h|/h	does	not	exist.	Hence	it	follows	from	Parseval’s	Identity	that	4	∞	X	1	π	(a2k	(f	)	+	b2k	(f	))
sin2	kh	=	k=1	Z	π	|f	(x	+	h)	−	f	(x	−	h)|2	dx	−π	for	each	h	∈	R.	Then	2	e−1/x	1/xj+1	(j	+	1)/xj+2	(j	+	1)/xj−1	=	lim	=	lim	=	lim	.	9.2.6.	For	each	x	∈	K,	f	is	constant	on	Bδx	(x)	∩	K.	Since	L	is	the	line	segment	between	(a	+	c)/2	and	(b	+	c)/2,	L	has	direction	v	:=	a+c	b+c	a−b	−	=	2	2	2	and	length	kvk.	8.1.4.	a)	Let	θ	be	the	angle	between	φ(t1	)	−	φ(t0	)
and	φ(t2	)	−	φ(t0	).	12.5.3.	If	f	∈	Cc∞	(R)	then	f	=	0	on	some	interval	(a,	b).	It	converges	to	the	continuous	function	0	as	k	→	∞,	so	by	Dini’s	Theorem,	(log	k	+	x)/(k	+	x)	→	0	uniformly	on	[0,	1]	as	k	→	∞.	Case	2.	If	it	holds	for	n	then	n+1	X	k=1	a−1	1	a−1	1	=	1	−	n	+	n+1	=	1	−	n+1	.	12.1.3.	By	Remark	12.6,	every	rectangle	is	a	Jordan	region.	c)	(k	+
1)/k	≥	1	so	the	terms	of	this	series	are	all	≥	1.	So,	let	x	∈	E	and	choose	xk	∈	D	such	that	xk	→	x.	Moreover,	xn−1	+	1	−	1	≤	1	−	1	=	0.	d)	Repeat	the	proof	of	Theorem	2.29.	By	the	Triangle	Inequality,	n	≥	N	implies	ρ(xn	,	yn	)	≤	ρ(xn	,	a)	+	ρ(yn	,	a)	<	ε.	By	definition,	f	(A	\	B)	⊇	f	(A)	\	f	(B)	holds	whether	f	is	1–1	or	not.	Therefore,	{sn	}	is	bounded.	10.3.9.
Suppose	f	:	R	→	R	is	continuous	and	I	=	(a,	b).	By	definition	and	Exercise	5.3.7c,	L(y)	=	xq	=	qL(t)	=	L(tq	).	Thus	(f	−1	)0	(xn	)	=	1/f	0	(f	−1	(xn	))	→	1/f	0	(f	−1	(x0	))	=	(f	−1	)0	(x0	)	as	n	→	∞.	n→∞	n→∞	n→∞	The	remaining	two	inequalities	follow	from	Exercise	2.5.2.	For	example,	lim	sup	xn	+	lim	inf	yn	=	−	lim	inf	(−xn	)	−	lim	sup(−yn	)	n→∞	n→∞	n→∞
n→∞	≤	−	lim	inf	(−xn	−	yn	)	=	lim	sup(xn	+	yn	).	Let	w	=	F	(x,	y,	f	(x,	y)).	c)	By	repeating	the	proof	of	Theorem	2.8,	we	can	show	that	every	Cauchy	sequence	is	bounded.	xp+1	By	Remark	5.46	and	Exercise	5.4.2a,	this	last	integral	is	absolutely	integrable	since	p	+	1	>	1.	If	w	∈	B²	(y)	then	ρ(w,	a)	≤	ρ(w,	y)	+	ρ(y,	a)	<	r	−	ρ(y,	a)	+	ρ(y,	a)	=	r	and	ρ(w,	a)
≥	ρ(y,	a)	−	ρ(w,	y)	>	ρ(y,	a)	+	s	−	ρ(y,	a)	=	s.	Thus	{φj	ψk	}	is	a	C	p	partition	of	unity	on	V	subordinate	to	the	covering	{Vj	∩	Wk	}.	Since	A	and	B	are	compact	(hence	bounded—see	Theorem	10.46),	use	the	Bolzano-Weierstrass	Property	to	choose	subsequences	such	that	xkj	→	x0	∈	A	and	ykj	→	y0	∈	B.	11.3.8.	a)	dz	=	2x	dx	+	2y	dy.	√	√	√	√	√	√	b)	If	n	+
3	+	n	∈	Q	then	+	3	+	n)2	∈	Q.	2	2	x→0	xj+1	x→0	e1/x	x→0	2e1/x	/x3	x→0	2e1/x2	L	:=	lim	If	j	−	1	≤	0	then	1/xj−1	=	x1−j	is	bounded	near	0,	hence	L	=	0.	Given	²	>	0	choose	N0	so	large	that	k	≥	N0	and	x	∈	E	imply	|fk	(x)	−	f	(x)|	<	²/2.	By	Definition	13.6	and	the	Fundamental	Theorem	of	Calculus,	ds/dt	=	kφ0	(t)k,	hence	by	the	Inverse	Function
Theorem,	dt/ds	=	(`−1	)0	(s)	=	1/kφ0	(t)k,	where	t	=	`−1	(s).	b)	Following	Example	2.13,	n3	+	n	−	2	1	+	(1/n2	)	−	(2/n3	)	1	=	→	3	2n	+	n	−	2	2	+	(1/n2	)	−	(2/n3	)	2	as	n	→	∞.	Therefore,	1/(2x2	+	x	−	3	≥	M	.	d)	The	graph	of	x2	−	2x	+	2	is	a	parabola	whose	minimum	is	1	at	x	=	1.	By	Remark	10.44,	A	and	B	are	closed	sets,	so	by	Theorem	10.31,	A	∩	B	is
a	closed	subset	of	the	compact	set	A.	On	the	other	hand,	since	w	+	1	is	not	the	supremum	of	E,	w	+	1	>	10n+1	y.	and	D(f	·	g)(x,	y)	=	[	xy	cos	x	+	2xy	sin	x	−	y	cos	y	c)	Since	·	−y	sin(xy)	−x	sin(xy)	Df	(x,	y)	=	log	y	x/y	we	have	·	D(f	+	g)(x,	y)	=	xy	sin	y	+	x2	sin	x	−	x	cos	y	]	.	The	limit	is	continuous	because	φ0	is	continuous.	Let	x	∈	[c,	d].	This	point	is
outside	H	so	can	be	disregarded.	However,	the	product	of	any	irrational	with	0	is	a	rational.	In	particular,	it	follows	from	Exercise	1.6.5c	that	f	is	1–1	if	and	only	if	f	is	onto.	Finally,	by	the	Chain	Rule,	(xα	)0	=	(E(αL(x)))0	=	E(αL(x))	·	αL0	(x)	=	xα	α	=	αxα−1	.	Since	xyz	=	16,	neither	x	nor	y	is	zero.	Thus	f	(x/m)	=	f	(x)/m	for	m	∈	N.	Hence	by	the
Intermediate	Value	Theorem,	there	is	an	x	(between	−1	and	0)	such	that	f	(x)	=	0.	Hence	x	∈	BX	∩	Y	⊂	V	,	i.e.,	V	is	open	in	Y	.	0	0	Hence	by	the	Fundamental	Theorem	of	Calculus,	Z	y	fx	=	Pv	(x,	v)	dv	+	h0	(x)	=	P	(x,	y)	−	P	(x,	0)	+	h0	(x).	1.3	The	Completeness	Axiom.	11.7.6.	Suppose	D(2)	f	(a)(h0	)	<	0	for	some	h0	∈	R2	.	Hence	if	a	6=	0,	then	it
follows	from	the	Root	Test	that	this	series	converges	absolutely	when	a|x|	<	1,	i.e.,	|x|	<	1/a.	10.2.4.	a)	Surely	a	set	which	has	infinitely	many	points	is	nonempty.	Since	gn	→	g	and	g	is	bounded	by	M	,	choose	N2	so	large	that	|gn	(x)|	≤	2M	for	all	n	≥	N2	and	x	∈	E.	108	Copyright	©	2010	Pearson	Education,	Inc.	C1	:	x2	+	z	2	=	8,	y	=	1,	oriented	in	the
clockwise	direction	when	viewed	from	far	out	the	y	axis,	and	C2	:	x2	+	z	2	=	8,	y	=	0,	oriented	in	the	counterclockwise	direction	when	viewed	from	far	out	the	y	axis.	Let	φ(x)	=	xe−x	.	Since	f	0	(x)	=	−1/(1	+	x2	)	<	0	for	all	x	∈	R,	f	(k)	↓	0	as	k	→	∞.	We	conclude	that	f	(b)	=	0.	Then	dx	=	dy	=	2t	dt,	dz	=	dt,	and	Z	√	Z	0	x	dx	+	cos	y	dy	−	dz	=	C	(2t2	+	2t
cos(t2	)	−	1)	dt	=	1	1	−	sin(1).	Thus	choose	|x	−	y|	<	δ	and	x,	y	∈	E0	imply	|f	(x)	−	f	(y)|	0,	choose	an	integer	n	>	1	so	large	that	1/n	<	²/2	and	choose	δ	>	0	so	small	that	2(n	−	1)δ	<	²/2.	Thus	|f	(x,	y)|	≤	M	|x	−	1|,	and	it	follows	from	the	Squeeze	Theorem	that	f	(x,	y)	→	0	=:	L	as	(x,	y)	→	(1,	b).	By	the	Approximation	Property,	choose	xk	∈	E	such	that	xk	→
sup	E.	Since	Faa	=	2	k=1	x2k	>	0,	this	critical	point	is	either	a	minimum	or	a	saddle	point.	Let	δ	>	0	be	so	small	that	Bδ	(xj	)	⊂	Rj0	and	define	A	as	above.	1.3.2.	Since	a	−	1/n	<	a	+	1/n,	choose	rn	∈	Q	such	that	a	−	1/n	<	rn	<	a	+	1/n,	i.e.,	|a	−	rn	|	<	1/n.	b)	Let	ε	>	0	and	set	δ	:=	ε.	This	is	sometimes	called	the	Reciprocal	Rule.	Let	f	(x)	=	x	and	g(x)	=	1
if	x	<	2	and	2	if	x	≥	2.	c)	By	b),	(1	+	1/n)n	≥	1n	+	n1n−1	(1/n)	=	2.	Otherwise,	given	any	M	>	0	there	is	an	N	∈	N	such	that	xN	>	M	.	Hence	its	arc	length	is	2	2	2	4	+	4	+	4	=	4	3.	x	]	and	Dg(x,	y)	=	[	x	cos	x	+	sin	x	sin	y	].	Hence	by	Theorem	10.34,	Ao	⊆	B	o	.	If	x	∈	A,	then	x	≤	sup	A.	Since	each	of	the	numbers	x0	,	y0	,	u0	,	v0	,	s0	,	t0	is	nonzero,	this
determinant	is	nonzero.	As	t	→	∞,	(x,	y)	→	(0,	0)	and	dy/dx	=	(2t	−	t4	)/(1	−	2t3	)	→	∞.	√	b)	Let	f	(x)	=	x	−	log	x	−	0.6.	Since	x	≥	4,	√	√	x−2	x	√	f	0	(x)	=	1/(2	x)	−	1/x	=	≥	0.	Hence	sn	converges	by	Theorem	2.29.	Moreover,	by	Exercise	12.5.1,	products	of	functions	with	compact	support	have	compact	support.	Since	(2/3)k	→	0	as	k	→	∞,	it	follows	that	E	is
of	measure	zero.	By	Gauss’	Theorem,	ZZ	ZZZ	Z	Z	1	Z	Z	1	y|z|	dV	=	2	yz	dy	d(x,	z)	+	2	yz	dy	d(x,	z)	√	A	0	B	x2	+z	2	−1	Z	H	Z	=	z	d(x,	z)	+	(2	−	x2	−	z	2	)z	d(x,	z)	ω=	S	Z	A	π	Z	=	B	1	Z	2	π	√	2	Z	r	sin	θ	dr	dθ	+	0	0	0	√	(2r2	−	r4	)	sin	θ	dr	dθ	=	2(8	2	−	2)/15.	20	Copyright	©	2010	Pearson	Education,	Inc.	Combine	(6)	and	(7).	Let	(x0	,	y0	)	be	a	point	where
x0	=	y0	.	Since	f	2	≥	0,	we	conclude	that	f	2	,	hence	f	,	is	identically	zero	on	[a,	b].	Therefore,	Vol	(x	+	E)	:=	inf	G	X	|x	+	Rj	|	=	inf	G	Rj	∩E6=∅	X	|Rj	|	=	Vol	(E)	Rj	∩E6=∅	b)	Since	φ(x)	:=	αx	is	C	1	and	∆φ	=	αn	6=	0,	it	is	clear	by	Theorem	12.10	that	αE	is	a	Jordan	region	if	and	only	if	E	is.	c)	By	part	b)	and	the	Extreme	Value	Theorem,	1/|g(x0	)|	=	inf
x∈E	1/g(x)	is	positive.	R	Conversely,	by	part	b)	the	function	f	(x,	y)	:=	C(x,y)	F	·	T	ds	is	well-defined.	4.5	Inverse	Functions.	Therefore,	0	<	a	<	2	+	a	−	√2	=	b.	Thus	y	∈	Br	(a)	∩	Bs	(b).	Then	f	is	C	∞	on	R.	(Indeed,	in	either	case,	q	<	p	so	this	expression	is	eventually	bigger	P	than	q.)	∞	The	inequality	implies	|ak+1	/ak	|	<	1	−	q/k	for	k	large.	By	Theorem



9.6,	it	follows	that	fk	→	some	function	f	pointwise	on	H.	Hence	n−1	U	(f,	P	)	=	2	X	2	+	2δ	=	+	2(n	−	1)δ	<	²/2	+	²/2	=	².	f	(x)	>	|2M	|/2	=	M	.	14.5.5.	Suppose	F	is	not	convex.	Since	E	is	bounded	above	(by	a),	it	follows	from	the	Completeness	Axiom	and	Theorem	1.15	that	n0	=	sup	E	exists	and	belongs	to	E.	Thus	x=−	a	,	2cD	y=−	b	,	2cE	and	z=	1	4c2	µ
a2	b2	+	D	E	¶	.	)	onto	the	number	with	decimal	expansion	0.x1	x2	·	·	·	.	But	this	follows	immediately	from	the	Squeeze	Theorem	since	φ(N	)	is	bounded	as	N	→	∞	and	e−(s−a)N	→	0	as	N	→	∞	for	any	s	≥	b	>	a.	7.3.10.	Since	ak	≥	0,	it	follows	that	sn	→	∞	as	n	→	∞.	In	particular,	all	the	functions	which	appear	in	this	problem	are	products	of	integrable
and/or	continuous	functions,	hence	integrable.	In	particular,	X	contains	more	than	two	clopen	sets.	b)	Suppose	f	is	increasing	and	continuous	on	(a,	b).	kxk	kyk	n(b	−	a)2	76	Copyright	©	2010	Pearson	Education,	Inc.	Telescoping,	we	obtain	Z	F	·	T	ds	=	C	N	X	f	◦	φj	(bj	)	−	f	◦	φj	(aj	)	=	f	◦	φN	(bN	)	−	f	◦	φ1	(a1	)	=	0	j=1	since	C	is	closed.	Now	for	k	>	e,
log(1/|ak	|)	log(log	k	log	log	k	)	(log	log	k)2	log2	u	=	=	≡	.	Suppose	it	holds	for	some	n.	Finally,	letting	r0	↓	r,	we	√	k	conclude	that	lim	supk→∞	ak	≤	r,	as	required.	d)	Let	η	>	0	and	let	C²	be	the	constants	in	part	c).	Thus	choose	M	>	0	such	that	|xn	|	and	|yn	|	are	both	≤	M	for	all	n	∈	N.	Consequently,	if	j	>	J	then	(since	k	+	j	>	k)	¯N	¯	∞	∞	¯X	a	¯	X	X	ak
|ak	|	¯	k	¯	≤¯	+	<	².	Thus	g	is	well	defined	on	all	of	X.	11.5	The	Mean	Value	Theorem	and	Taylor’s	Formula.	Therefore,	sk	1	>	y	and	x	+	br1	≤	s`	≤	y	+	bk1	for	all	k1	≤	`	≤	r1	.	k≥n	k≥n	Taking	the	infimum	of	this	inequality	over	all	j	≥	n,	we	obtain	inf	k≥n	(xk	+yk	)	≤	supk≥n	xk	+inf	j≥n	yj	.	nn	nn	≤	n!	en−1	≤	nn+1	for	all	n	∈	N.	But	by	part	a),	Ac
∪(∂B)c	⊆	∂A	and	B	c	∪(∂A)c	⊆	∂B.	Hence	by	hypothesis,	there	is	an	n	∈	N	and	a	1–1	function	φ	from	E	onto	{1,	2,	.	13.1.5.	a)	This	curve	evidently	lies	on	the	cone	x2	+	y	2	=	z	2	.	b)	Let	F	=	(x(x2	+	y	2	+	z	2	)−3/2	,	y(x2	+	y	2	+	z	2	)−3/2	,	z(x2	+	y	2	+	z	2	)−3/2	)	and	E	=	B1	(0,	0,	0).	1.2.8.	a)	Since	(1	−	n)/(1	−	n2	)	=	1/(1	+	n),	the	inequality	is
equivalent	to	1/(n	+	1)	<	.01	=	1/100.	Then	x	∈	Bδxj	(xj	)	for	some	1	≤	j	≤	N	,	so	f	(x)	=	f	(xj	).	It	is	closed	and	connected.	Therefore,	by	Dini’s	Theorem	and	Theorem	7.10,	Z	1	lim	k→∞	µ	x2	f	0	k	k2	+	x	¶	Z	1	dx	=	x2	f	(0)	dx	=	0	f	(0)	.	If	y	=	0,	1	≤	x	≤	3,	then	f	(x,	y)	=	x2	takes	its	minimum	at	x	=	0.	To	compute	the	value	of	A(x)	when	x	=	p0	∈	Q.	Thus	n
>	39/2,	i.e.,	n	≥	20.	Moreover,	since	fxk	is	continuous	on	E	∗	:=	k=1	[xk	−rk	,	xk	+rk	],	the	Extreme	Value	Theorem	implies	that	there	are	constants	Mk	that	|fxk	|	≤	Mk	on	E	∗	for	all	k.	gx	(a,	b,	c)	gy	(a,	b,	c)	gz	(a,	b,	c)	In	particular,	fx	(a,	b,	c)gz	(a,	b,	c)	−	fz	(a,	b,	c)gx	(a,	b,	c)	=	0	=	fy	(a,	b,	c)gz	(a,	b,	c)	−	fz	(a,	b,	c)gy	(a,	b,	c).	0	On	the	other	hand,	∂T
has	three	pieces:	C1	which	runs	from	(1,	0,	0)	to	(0,	0,	1),	C2	which	runs	from	(0,	0,	1)	to	(0,	1,	0),	and	C3	which	runs	from	(0,	1,	0)	to	(1,	0,	0).	Define	g	on	E	by	g	=	f	.	Hence	by	d),	{y}	=	f	({a})	∩	f	({b})	=	∅,	a	contradiction.	On	the	other	hand,	if	x	∈	E	then	since	E	o	=	∅,	Br	(x)	is	not	contained	in	E	for	any	r	>	0,	i.e.,	Br	(x)	∩	E	c	6=	∅	for	all	r	>	0.
Thus	n	≥	N	implies	|1	+	2xn	−	3|	≡	2	|xn	−	1|	<	ε.	It	converges	to	the	continuous	function	sin	x	1/2	as	k	→	∞.	Hence	differentiating	term	by	term,	we	obtain	¯∞	¯	∞	¯X	cos(x/(k	+	1))	¯	X	1	¯	¯	0	|f	(x)|	=	¯	=	1.	3	6	√	1.4.9.	a)	If√m	=	k	2	,	then	m	=	k	by	definition.	Hence	x	=	z/2	and	y	=	z/2.	Suppose	xn	>	2.	It	also	diverges	for	p	≤	0	by	the	Divergence	Test.
10.1.5.	a)	Let	a	be	the	common	limit	point.	c)	Consider	f	(x)	=	2x	+	3x	−	2.	Since	f	0	is	continuous,	it	follows	from	the	sign	preserving	lemma	that	there	is	an	interval	I	⊂	(a,	b)	containing	x0	such	that	f	0	(x)	>	0	for	all	x	∈	I.	b)	By	Exercises	11.1.8	and	11.1.9,	L{t	sin	πt}	=	−L{sin	πt}0	(s)	=	−(π/(s2	+	π	2	))0	=	2sπ/(s2	+	π	2	)2	.	If	f	0	<	0	on	[a,	b],	then
set	ψ(u)	=	(f	−1	(−u),	−u)	for	u	∈	[−f	(a),	−f	(b)]	and	τ	(u)	=	f	−1	(−u).	Thus	xn	∈	Br	(a)	∩	E.	But	by	(2),	cos	θ	=	(a	×	b)	·	c/(ka	×	bk	kck).	Hence	(1,	1,	1)	and	(−1,	−1,	−1)	are	the	only	points	where	the	tangent	plane	of	H	is	parallel	to	x	+	y	−	z	=	1.	This	function	is	continuous,	and	f	(−1)	=	1/e	−	1	<	0	<	1	=	f	(0).	Thus	the	point	on	the	paraboloid	where
the	tangent	plane	is	parallel	to	x	+	y	+	z	=	1	is	(−1/2,	−1/2,	1/2)	and	an	equation	of	this	tangent	plane	is	2x	+	2y	+	2z	=	−1.	By	elementary	set	algebra	and	Theorem	1.37,	(f	−1	(A)	∩	f	−1	(B))	∪	f	−1	(C)	=	f	−1	(A	∩	B)	∪	f	−1	(C)	⊃	f	−1	(A	∩	B)	6=	∅.	sin	t	c)	By	part	b)	and	a	change	of	variables,	(*)	π	2	(S2N	f	)(	)=	2N	π	Z	π/2N	0	sin	2N	t	2	dt	=	sin	t	π	Z
0	π	sin	u	du.	c)	Since	√	√	p	(k	−	k	2	+	k)(k	+	k	2	+	k)	−k	1	√	√	k	−	k2	+	k	=	=	→−	2	k	+	k2	+	k	k	+	k2	+	k	√	as	k	→	∞	and	by	l’Hˆopital’s	Rule,	k	1/k	→	e0	=	1	as	k	→	∞,	we	see	by	Theorem	9.2	that	(k−	k	2	−	k,	k	1/k	,	1/k)	→	(−1/2,	1,	0)	as	k	→	∞.	c)	If	f	is	not	increasing	on	(a,	b)	then	there	are	points	c	<	d	in	(a,	b)	such	that	f	(d)	<	f	(c).	By	symmetry,
then,	2.9253226	=	2	·	(1.4626613)	<	−1	ex	dx	<	2.9253626.	Since	H	is	compact,	there	exists	a	finite	subset	A0	of	A	such	that	{Vα	}α∈A0	covers	H.	11.3.10.	Since	it	is	nonnegative	on	∂H,	there	is	a	point	(x1	,	t1	)	∈	H	0	such	that	u(x1	,	t1	)	<	0.	By	the	Triangle	Inequality,	n	≥	N	implies	|xn	−	yn	|	≤	|xn	−	a|	+	|yn	−	a|	<	ε.	f	(x)	≥	g(x).	,	x3	=	−.31766	.	If
−δ	<	x	<	0,	then	f	(x)	=	−x/x	=	−1	so	|f	(x)	−	L|	=	|	−	1	+	1|	=	√	0	<	ε.	n→∞	n→∞	n→∞	c)	Let	xn	=	(−1)n	and	yn	=	(−1)n+1	.	By	Lebesgue’s	Theorem,	f	is	almost	everywhere	continuous.	If	x	=	−1	then	f	(x,	y)	=	−1	−	3y	−	y	3	which	has	no	critical	points.	d)	Let	(x,	y,	z)	=	φ(t).	,	JN	such	that	τ	0	>	0	on	each	Jk0	and	J	=	∪N	k=1	Jk	.	If	P	(x)	=	an	xn	+	·	·	·	+
a0	,	then	it	follows	from	Theorem	4.10	that	P	0	(x)	=	nan	xn−1	+	·	·	·	+	a1	exists	and	is	a	polynomial.	If	a	+	b	+	c	=	4	then	b	=	(20	−	8a)/7,	c	=	(8	+	a)/7.	14.1.1.	a)	Since	x2	sin	kx	is	odd,	bk	(x2	)	=	0	for	k	=	1,	2,	.	Hence	by	Exercise	3.18,	f	∨	g	and	f	∧	g	are	absolutely	integrable	on	(a,	b).	Since	F	(0,	0,	0)	=	0	and	∂F	3	=	2z	+	p	2	∂z	2	sin(x	+	y	2	)	+	3z	+
4	equals	3/4	6=	0	at	(0,	0,	0),	the	expression	has	a	differentiable	solution	near	(0,	0,	0)	by	the	Implicit	Function	Theorem.	In	particular,	1/xn	<	2.	Finally,	since	P0	is	finer	than	P	,	U	(f,	P0	)	≤	U	(f,	P	).	By	the	argument	in	part	b),	(	2,	xn	)	are	closed	and	bounded,	√	but	not	compact.	8.3.10.	The	result	is	false	if	“open”	is	omitted.	b)	Let	V	be	relatively	open
in	f	(E),	i.e.,	V	=	U	∩	f	(E)	for	some	U	open	in	Y	.	Thus	the	Taylor	series	contains	only	odd	terms.	9.4.1.	a)	f	(0,	π)	=	(0,	1]	is	not	open	and	we	don’t	expect	it	to	be;	f	[0,	π]	=	[0,	1]	is	compact	and	connected	as	Theorems	9.29	and	9.30	say	it	should;	f	(−1,	1)	=	(−	sin	1,	sin	1)	is	open,	big	deal;	f	[−1,	1]	=	[−	sin	1,	sin	1]	is	compact	and	connected	as
Theorems	9.29	and	9.30	say	it	should.	Then	p	√	√	√	F	·	φ0	=	(	−1	+	cos3	t	+	5,	sin	t/	2,	1)	·	(0,	−	sin	t,	cos	t/	2)	=	(cos	t	−	sin2	t)/	2.	Thus	limx→0	log	x	does	not	exist.	b)	By	parts	and	part	a),	Z	∞	Z	Z	n	∞	n−1	−st	n!	∞	−st	n!	tn	e−st	dt	=	t	e	dt	=	·	·	·	=	n	e	dt	=	n+1	s	0	s	0	s	0	for	s	R>	0.	Then	`(t)	=	r(t	−	t0	),	and	θ(t)	=	t	−	t0	.	Hence	by	the	Comparison
Theorem,	f	is	not	improperly	integrable	on	[a,	b).	g)	Clearly	xn	→	∞	as	n	→	∞.	Since	∇fy	(a,	b)	·	(h,	th)	−	∇fy	(a,	b)	·	(0,	th)	=	hfyx	(a,	b)	we	can	write	∆(h)	=	fy	(a	+	h,	b	+	th)	−	fy	(a,	b	+	th)	h	=	fy	(a	+	h,	b	+	th)	−	fy	(a,	b)	−	∇fy	(a,	b)	·	(h,	th)	−	(fy	(a,	b	+	th)	−	fy	(a,	b)	−	∇fy	(a,	b)	·	(0,	th))	+	hfyx	(a,	b).	5.4.3.	Since	p	>	0,	integration	by	parts	yields	Z	1	∞
sin	x	cos	x	¯∞	dx	=	−	p	¯1	−p	xp	x	Z	1	∞	cos	x	dx	=	cos(1)	−	p	xp+1	Z	1	∞	cos	x	dx.	Since	y	=	x2	+	2x	−	5	is	a	quadratic	in	x,	we	√	have	x	=	(−2	±	4	+	4(5	+√y))/2	=	−1	±	6	+	y.	If	x0	<	x	<	x0	+	δ	then	P	(x)/(x	−	x0	)	>	m0	/δ	≥	m0	(M/m0	)	=	M	.	4.2.1.	a)	By	the	Product	Rule,	(f	g)0	(2)	=	f	0	(2)g(2)	+	f	(2)g	0	(2)	=	3a	+	c.	Hence	f	−1	(V	)	∩	E	is	relatively
open	in	E.	By	Exercise	12.2.3,	we	have	E	ZZ	1	∆u(x0	)	=	lim	2	∆u	dA	=	0.	d)	Applying	L’Hˆopital’s	Rule	twice,	we	obtain	√	√	√	√	k	log(	k/(	k	−	1))	log(	k/(	k	−	1))	=	lim	k→∞	k→∞	log	k	log	k/k	√	√	k−1	−k	2	/2	k	=	lim	√	lim	√	k→∞	k	k→∞	(	k	−	1)2	(1	−	log	k)	√	k	−	k/2	√	=	lim	lim	k→∞	(	k	−	1)2	k→∞	1	−	log	k	√	−1/(4	k)	=	lim	=	∞.	Since	kNφ	k	=	k(f	0	(u),	0,
1)k	=	we	have	Z	d	Z	A(S)	=	c	b	p	1	+	(f	0	(u))2	,	p	1	+	(f	0	(u))2	du	dv	=	(d	−	c)L(C)	a	by	Definition	13.6.	c)	Parameterize	the	surface	by	φ(u,	v)	=	(u,	f	(u)	cos	v,	f	(u)	sin	v),	E	=	[a,	b]	×	[0,	2π].	In	particular,	ex	−	2x	−	0.7	≥	f	(1)	=	e	−	2.7	>	0.	b)	Parameterize	the	surface	S	using	φ(u,	v)	=	(u,	v,	f	(u)),	E	=	[a,	b]	×	[c,	d].	1.5.1.	α)	f	is	1–1	since	f	0	(x)	=	3	>
0	for	x	∈	R.	√	√	√	√	b)	Suppose	0	≤	a	<	b.	Thus	xn	→	∞	but	f	(xn	)	3.2.6.	Given	x0	∈	[0,	1],	choose	qn	∈	Q	∩	[0,	1]	such	that	qn	→	x0	as	n	→	∞.	By	dividing	by	it,	we	may	suppose	that	the	equation	of	the	plane	looks	like	ax	+	by	+	cz	+	dw	=	1.	Letting	k	→	∞,	we	conclude	that	1	+	ρ(a,	b)	=	∞,	a	contradiction.	It	follows	that	Z	2	p	π	(5	+	2x	+	x2	)	dx	=	10	+	.
Suppose	to	the	contrary	there	is	a	subsequence	{nk	}	of	integers	such	that	kfnk	−	f	k∞	→	0	as	k	→	∞.	3(a	+	b)	c)	If	φ(t)	=	(2	sin	t,	4	sin2	t,	2	cos	t)	and	I	=	[0,	2π],	then	kφ0	(t)k	=	k(2	cos	t,	8	sin	t	cos	t,	−2	sin	t)k	=	2	hence	Z	p	Z	1	+	yz	2	ds	=	2	C	2π	p	1	+	16	sin2	t	cos2	t,	(1	+	16	sin2	t	cos2	t)	dt	=	12π,	0	using	the	double	angle	formulas	sin2	t	=	(1	−
cos	2t)/2	and	cos2	t	=	(1	+	cos	2t)/2.	Set	S1	=	φ(E1	)	and	S2	=	φ(E2	\	E1	).	Then	ka	+	bk1	=	n	X	|ak	+	bk	|	≤	k=1	n	X	|ak	|	+	|bk	|	=	kak1	+	kbk1	,	k=1	and	ka	+	bk∞	=	sup	|ak	+	bk	|	≤	sup	|ak	|	+	sup	|bk	|	=	kak∞	+	kbk∞	.	g(x)	=	f	0	(x)	−	It	follows	that	the	sum	of	integrals	on	the	right	side	of	statement	b)	is	just	the	indefinite	integral	of	f	0	.	,	n}	onto
E.	Choose	r	∈	Q	such	√	that	a	−	2	<	r	<	b	−	2.	+	+	−	−	+	such	that	if	b1	=	a1	,	b2	=	a2	,	.	But	this	is	exactly	what	it	means	for	x	to	be	parallel	to	y.	b)	Let	ε	>	0.	k=0	P∞	Taking	the	limit	of	this	inequality	as	²	→	0,	we	conclude	that	k=0	ak	rk	→	L	as	r	→	1−.	Hence	by	Theorem	4.18,	f	has	onesided	limits	at	each	point	in	[a,	b].	On	the	other	hand,	if	x	<	0,
then	by	what	we	just	showed,	sin2	x	=	sin2	(−x)	≤	2(−x)	=	2|x|.	Let	xn	=	n2	and	yn	=	−n	and	note	by	Exercise	2.2.2a	that	xn	+	yn	→	∞	as	n	→	∞.	Then	Qz	=	−p,	Pz	=	q,	and	Qx	−	Py	=	r.	Conversely,	suppose	f	(x)	does	not	converge	to	L	as	x	→	∞.	Hence	this	set	is	nonempty.	,	bn	).	It	is	relatively	closed	in	{(x,	y)	:	x2	+	2y	2	<	6}	because	the	limit	of	any
convergent	sequence	(in	the	SUBSPACE	sense)	in	the	set	stays	in	the	set.	We	conclude	that	a	<	k	<	b.	Taking	the	limit	of	this	inequality	as	n	→	∞,	we	obtain	lim	inf	xn	+	lim	inf	yn	≤	lim	inf	(xn	+	yn	).	This	contradiction	proves	that	f	(x0	)	=	y0	.	Since	δ	<	1,	|x	−	1|	<	δ	implies	|x2	+	x	+	3|	<	9.	,	n},	and	choose	rationals	bk	such	that	|ak	−	bk	|	<	ε/(n	+
1)M	for	0	≤	k	≤	n.	Therefore,	2	<	b	=	1	+	a	−	1	<	1	+	(a	−	1)	=	a.	Hence	these	surfaces	intersect	to	form	a	circle	in	the	plane	z	=	z0	:=	(−1	+	5)/2	√	√	√	of	radius	z0	.	Since	k=1	|fk	(x)	−	PN0	f	(x)|	is	bounded	on	E,	choose	N	such	that	(1/n)	k=1	|fk	(x)	−	f	(x)|	<	²/2	for	all	n	≥	N	and	x	∈	E.	c)	If	f	is	1–1	(respectively,	onto),	then	it	follows	from	part	a)	that
g	◦	f	is	1–1	(respectively,	onto).	Thus	the	pair	U,	V	separates	E,	which	contradicts	the	fact	that	E	is	connected.	b)	The	set	E	=	B1	(0,	0)	∪	B1	(3,	0)	∪	{(x,	0)	:	1	≤	x	≤	2}	is	connected	in	R2	,	but	E	o	=	B1	(0,	0)	∪	B1	(3,	0)	is	not.	d)	If	A	=	(0,	1)	and	B	=	[1,	2],	then	∂(A	∩	B)	=	∅	6=	{1}	=	∂A	∩	∂B	⊆	(A	∩	∂B)	∪	(B	∩	∂A)	∪	(∂A	∩	∂B).	Thus	(P,	Q,	R)	·	φ0	(t)	=
(−2	cos	t,	0,	2	sin	t)	·	(cos	t,	0,	−	sin	t)	=	−2	cos2	t	−	2	sin2	t	=	−2,	and	(P,	Q,	R)	·	ψ	0	(t)	=	(−8	sin	t,	0,	8	cos	t)	·	(−2	sin	t,	0,	2	cos	t)	=	16	cos2	t	+	16	sin2	t	=	16.	b)	Since	∇f	=	(3x2	y	−	y	3	,	x3	−	3xy	2	)	=	(2,	−2)	at	(1,	1),	and	the	equation	of	the	tangent	plane	is	z	=	f	(1,	1)	+	∇(1,	1)	·	(x	−	1,	y	−	1),	we	have	z	=	2x	−	2y.	,	ρ(xn−1	,	a)}.	Thus	n	≥	N
implies	|3(1	+	1/n)	−	3|	≡	|3/n|	≤	3/N	<	ε.	15	Copyright	©	2010	Pearson	Education,	Inc.	Since	cn	→	∞	as	n	→	∞,	it	follows	that	0	=	A	−	A	=	lim	(f	(n	+	1)	−	f	(n))	=	lim	f	0	(cn	)	=	L.	Conversely,	since	E	is	closed	and	bounded,	it	follows	from	the	Heine-Borel	Theorem	that	E	is	compact.	Thus	f	(x)	=	0	for	all	x	∈	[0,	1].	b)	Let	V	represent	the	volume	of	P
and	θ	represent	the	angle	between	a	×	b	and	c.	It	follows	from	the	Completeness	Axiom	that	A(x)	=	sup	Ex	exists	for	every	x	∈	R.	4	32	30	c)	This	region	is	the	set	of	points	“under”	the	paraboloid	x	=	y	2	+	z	2	which	lies	“over”	the	region	in	the	yz	plane	bounded	by	z	=	y	2	and	z	=	4.	Then	{x0	,	x1	,	.	1	c)	Let	E	represent	the	three	dimensional	region
whose	boundary	is	S.	,	n}	we	have	|xk	|	≤	kxk	k	≤	nkxk∞	.	√	Thus	f	(k)	↓√0	as	k	→	∞	and	this	series	converges	by	the	Alternating	Series	Test.	Since	H	is	convex,	use	Taylor’s	Formula	to	write	f	(x)	=	f	(a)	+	D(2)	f	(c;	x	−	a)/2!.	This	happens,	by	part	b),	if	and	only	if	Rn	is	not	connected.	13.1.11.	Suppose	c	∈	(a,	b)	is	a	point	of	discontinuity	of	f	0	.	10.3.6.
Suppose	x	∈	/	E	o	but	Br	(x)	⊂	E.	13.3.8.	Let	(x,	y,	z)	=	ψ(u,	v).	In	particular,	if	p	≥	2	then	the	maximum	of	f	is	n(p−2)/p	and	the	minimum	is	1.	Let	s	<	min{ρ(x1	,	a),	.	(2k	−	1)k	2	)	and	observe	that	ak+1	/ak	=	(2k	+	2)k	2	/((2k	+	1)(k	+	1)2	)	=	2k	2	/(2k	2	+	3k	+	1)	<	1.	Taking	the	limit	of	(19)	as	n	→	∞,	we	obtain	c	=	c	−	f	(c)/f	0	(c),	i.e.,	f	(c)	=	0.	Hence
this	series	converges	everywhere	on	R.	Similarly,	B	has	a	supremum.	If	x	∈	E,	then	x	∈	Irj	(xj	)	for	some	j,	so	fxj	(x)	=	1.	√	shows	that	xn+1	=	2	+	xn	−	2	>	2	√	c)	Take	the	limit	of	x	=	2	+	x	as	n	→	∞.	Then	by	Theorem	8.37	Vol	(E1	∪	E2	)	>	V	(E1	∪	E2	;	G)	−	²	X	X	≥	|Rj	|	+	Rj	∩E	1	6=∅	X	|Rj	|	−	Rj	∩E	2	6=∅	|Rj	|	−	²	Rj	∩E1	∩E2	6=∅	≥	Vol	(E1	)	+	Vol
(E2	)	−	V	(E1	∩	E2	;	G)	−	²	>	Vol	(E1	)	+	Vol	(E2	)	−	2².	Since	0	<	a	<	1,	the	Geometric	series	k=1	a	converges.	Hence	by	definition,	P	(x)/(x	−	x0	)	→	∞	as	x	→	x0	+.	By	Theorem	2.8,	convergent	sequences	are	bounded.	π−2	π−2	c)	Let	T	(1,	0,	0,	0)	=	(a,	b).	f	(a)	53	Copyright	©	2010	Pearson	Education,	Inc.	If	k	>	N	,	then	k(k/(k	+	1),	sin(k	3	)/k)	−	(1,
0)k2	=	1/(k	+	1)2	+	sin2	(k	3	)/k	<	1/k	2	+	1/k	<	2/k	<	ε2	.	2.5.2.	By	Theorem	1.20,	lim	inf	(−xn	)	:=	lim	(	inf	(−xk	))	=	−	lim	(sup	xk	)	=	−	lim	sup	xn	.	However,	the	limit	of	fn	is	not	continuous	on	[0,	1]	(see	Remark	7.3).	Then	f	(xk	)	is	Cauchy,	hence	convergent	in	Rm	.	Hence	by	repeating	the	proof	of	Exercise	3.4.5d,	we	see	that	f	/g	is	uniformly
continuous	on	E.	7.1.2.	a)	Since	(336	+	3)/N	→	0	as	N	→	∞,	given	ε	>	0,	we	can	choose	N	∈	N	so	that	0	<	(336	+	3)/N	<	ε.	Then	f	is	C	p	and	φ	◦	g(V	)	coincides	with	the	graph	of	z	=	f	(x,	y),	(x,	y)	∈	V	.	Taking	the	limit	of	xn+1	=	xn	−	f	(xn	)/f	0	(a),	we	obtain	b	=	b	−	f	(b)/f	0	(a).	Moreover,	ak	=	(2/3)(4/5)	.	Hence	P	by	Dirichlet’s	Test,	∞	the	series
converges	if	and	only	if	k=1	ak	converges.	On	the	other	hand,	if	[a,	b]	⊂	(0,	∞)	then	¯	¯	Z	N	¯	¯	¯	¯	−xy	ye	dx¯	=	e−N	y	≤	e−N	a	→	0	¯1	−	¯	¯	0	R∞	0	e−xy	dx	R∞	independently	of	y.	By	Abel’s	Formula,	¯	n	¯	n−1	¯X	¯	X	¯	¯	fk	(x)gk	(x)¯	≤	|Fn,m	(x)|	|gn	(x)|	+	|Fk,m	(x)|	(gk	(x)	−	gk+1	(x))	¯	¯	¯	k=m	k=m	²	²	²	²	<	·M	+	(gm	(x)	−	gn	(x))	≤	+	(2M	)	=	².
11.5.10.	Since	Theorem	4.32	implies	that	L	is	continuous	on	(0,	∞),	it	follows	from	hypothesis	that	lim	tL(1	+	1/t))	=	lim	L((1	+	1/t)t	)	=	L(a)	=	1.	c)	Now	n2	≤	2n	+	1	holds	for	n	=	1,	2,	and	3.	Hence	by	part	a),	n	¯	¯	X	1	¯	xj	¯2	≤	¯	¯	≤1	(2−p)/p	a	n	j=1	for	1	<	p	≤	2.	Thus	the	first	partials	of	f	do	not	exist	at	(0,	0)	and	f	cannot	be	differentiable	at	(0,	0)	by
Theorem	11.14.	But	by	six	applications	of	l’Hˆopital’s	Rule,	k	4	/ek	k6	6!	=	lim	k	=	lim	k	=	0.	1.6.7.	a)	Let	q	=	k/j.	b)	By	Taylor’s	Formula,	there	is	a	c	between	x	and	1	such	that	|	log	x−Pn	(x)|	=	|(−1)n	(x−1)n+1	|/(cn+1	(n+1)).	By	Theorem	4.24,	ex	=	k=0	x2k	/k!	+	ec	xn	/n!	for	some	c	between	0	and	x.	Thus	set	ξ	=	r	+	2.	κ(x0	)	=	lim	¯¯	¯	¯	¯	s→s0	s→s0
s	−	s0	2	sin(θs	/2)	|s	−	s0	|	d)	Since	φ(t)	=	ν(`(t)),	we	have	by	the	Chain	Rule	that	φ0	(t)	=	ν	0	(`(t))	·	`0	(t)	=	ν	0	(`(t))	·	kφ0	(t)k	and	φ00	(t)	=	ν	(`(t))kφ0	(t)k2	+	ν	0	(`(t))kφ0	(t)k0	.	Since	(g	◦	f	)−1	=	f	−1	◦	g	−1	,	combining	the	Inverse	Function	Theorem	and	the	Chain	Rule	yields	((g	◦	f	)−1	)0	(g(b))	=	1	1	=	0	.	9.5	Compact	Sets.	6.6.2.	a)	It	converges
absolutely	for	all	p	>	0	by	the	Ratio	Test,	since	(k	+	1)/e(k+1)p	k+1	1	=	→	p	0.	c)	Since	|x	−	2|	≤	|x|	+	2,	−3	≤	x	≤	2	implies	|x2	+	x	−	6|	=	|x	+	3|	|x	−	2|	≤	6|x	−	2|.	Apply	the	Mean	Value	Theorem	and	the	Inverse	Function	Theorem	to	f	−1	.	0	Z	Z	(P,	Q,	R)	·	T	ds	=	C2	2π	√	√	(0,	8	cos2	t,	0)	·	(	8	cos	t,	0,	−	8	sin	t)	dt	=	0.	For	n	=	7,	this	last	ratio	is	about
0.00069	still	a	little	too	big,	but	it’s	about	0.00023	<	0.0005	for	n	=	8.	Let	E	=	{(x,	y,	0)	:	x2	≤	y	≤	1	and	−	1	≤	x	≤	1}.	0	0	b)	Let	p	≤	q.	Since	f	is	C	3	,	its	third	partial	derivatives	are	all	bounded	on	Br	(a,	b).	Conversely,	if	xn	is	Cauchy	and	xnk	→	a,	then	given	ε	>	0	there	is	an	N	such	that	n,	k	≥	N	implies	ρ(xn	,	xnk	)	<	ε/2.	Since	D	=	4ac	−	b2	,	f	(0,	0)
=	0	is	a	local	minimum	if	a	>	0	and	b2	−	4ac	<	0,	a	local	maximum	if	a	<	0	and	b2	−	4ac	<	0,	and	(0,	0)	is	a	saddle	point	if	b2	−	4ac	>	0.	(Notice	when	viewed	from	far	out	the	positive	y	axis	that	this	parameterization	is	oriented	clockwise	because	the	x	axis	lies	on	the	left	side	of	the	yz	plane.)	Then	√	√	√	√	F	·	φ0	=	(sin	t/	3,	−	sin	t/	3,	2	cos	t)	·	(−	sin	t,
−	sin	t,	cos	t/	3)	=	2	cos2	t/	3.	Let	(x2	,	y2	,	z2	)	be	a	point	on	Π	different	78	Copyright	©	2010	Pearson	Education,	Inc.	Since	E	\	U	⊂	E	0	is	compact	and	f	is	continuous	on	E	0	,	use	uniform	continuity	to	choose	a	δ	>	0	such	that	kx	−	yk	<	δ	and	x,	y	∈	E	0	imply	|f	(x)	−	f	(y|	<	²/(2Vol	(E)).	If	this	claim	holds,	then	the	estimates	above	yield	¯Z	¯	√	µ	¶	¯	π/2
¯	π	√	π	π	2	π	π	1	1.9794076	¯	¯	−a	sin	x	−a	2/2	√	+1	≈	e	dx¯	≤	e	+	≤	+	=	.	140	Copyright	©	2010	Pearson	Education,	Inc.	12.5.4.	Fix	j	∈	N.	we	have	Z	2π	Z	b	A(S)	=	|f	(u)|	0	Z	p	b	1	+	(f	0	(u))2	du	dv	=	2π	|f	(x)|	a	p	1	+	(f	0	(x))2	dx.	P∞	P∞	P∞	d)	By	Example	7.45,	ex	−	1	=	k=1	xk	/k!	=	x	k=0	xk	/(k	+	1)!.	4.5.4.	a)	Since	f	0	(x)	6=	0	and	f	0	is	continuous,
it	follows	from	the	Intermediate	Value	Theorem	that	either	f	>	0	on	(a,	b)	or	f	0	<	0	on	(a,	b).	b)	Let	I	=	[a,	∞)	⊂	(0,	∞).	c)	Let	E	=	{(x,	y)	:	x2	+	y	2	=	1,	x	6=	1}.	0	e)	The	boundary	of	S	is	given	by	x2	+	y	2	=	1,	z	=	6,	and	must	be	oriented	in	the	clockwise	direction	when	viewed	from	high	up	the	z	axis.	Note	that	T	(0,	0,	1,	0)	=	0.5(T	(0,	1,	1,	0)	−	T	(0,	1,
−1,	0))	=	0.5((3,	5)	−	(5,	3))	=	(−1,	1)	and	T	(0,	1,	0,	0)	=	0.5(T	(0,	1,	1,	0)	+	T	(0,	1,	−1,	0))	=	0.5((3,	5)	+	(5,	3))	=	(4,	4).	k→∞	k→∞	log	k	1/k	lim	By	the	Logarithmic	Test,	if	−α	>	1,	then	this	series	converges	absolutely.	π	−π	π	−π	ak	(f	+	g)	=	14.1.4.	Integrating	by	parts,	we	have	Z	1	π	0	f	(t)	cos	kt	dt	π	−π	µ	¶	Z	π	¯π	1	=	f	(t)	cos	kt	¯−π	+k	f	(t)	sin	kt	dt
π	−π	ak	(f	0	)	=	=	0	+	kbk	(f	)	since	f	is	periodic.	3.2.8.	Let	ε	>	0.	4.4.1.	a)	If	f	(x)	=	cos	x,	then	f	(2n)	(x)	=	(−1)n	cos	x	and	f	(2n−1)	(x)	=	(−1)n	sin	x.	Choose	by	the	Approximation	Property	an	xn+1	∈	E	such	that	max{xn	,	sup	E	−	1/(n	+	1)}	<	xn+1	≤	sup	E.	Since	P0	is	finer	than	P	,	Z	c	Z	b	U	(f,	P	)	≥	U	(f,	P0	)	=	U	(f,	P1	)	+	U	(f,	P2	)	≥	(U	)	f	(x)	dx	+
(U	)	f	(x)	dx.	Since	each	fxj	is	nonnegative	on	Br(xj	)	(xj	),	it	follows	from	the	choice	of	the	r(xj	)’s	that	f	(y)	≥	fxj	(y)	>	0.	If	E	is	closed,	then	it	is	already	bounded	because	it	is	a	subset	of	K.	By	Theorem	1.37,	f	(A	∩	B)	⊆	f	(A)	∩	f	(B).	Since	g(x)	6=	0,	it	follows	from	the	Intermediate	Value	Theorem	that	either	g(x)	>	0	or	g(x)	<	0	for	all	x	∈	[a,	b].	By
Remark	9.37,	A	and	B	are	closed	sets,	so	by	Theorem	8.24,	A	∩	B	is	a	closed	subset	of	the	compact	set	A.	See	Example	5.12.	P∞k=0	(−1/π	∞	k+1	k−1	k	c)	Pk=2	4	/9	=	36	k=2	(4/9)P	=	36(4/9)2	/(1	−	4/9)	=	64/5.	Apply	S	:=	Sx	:=	(Dφ(x))−1	to	the	identity	φ(x)	−	φ(y)	=	Dφ(x)(x	−	y)	+	²x−y	(x)	to	get	S	◦	φ(x)	−	S	◦	φ(y)	=	x	−	y	+	T	(x,	y)	where	T	(x,	y)	:=
S(²x−y	(x)).	Therefore,	Du	f	(a)	=	k∇f	(a)k	cos	θ.	d)	By	part	c),	Vol	(E1	)	=	Vol	((E1	\	E2	)	∪	E2	)	=	Vol	(E1	\	E2	)	+	Vol	(E2	).	This	inequality	holds	for	n	=	3.	R	R	Therefore,	(∂/∂x)	C(x)	F	·	T	ds	=	P	(x,	y).	Finally,	the	length	of	L	equals	ka	−	bk/2,	which	is	exactly	half	the	length	of	C.	By	part	a),	PN	PN	|Bn	−	b|	≤	(	k=1	|bk	−	b|	+	²(n	−	N	))/n.	5.3.11.	Then	Z
Z	2π	(P,	Q,	R)	·	T	ds	=	C1	Similarly,	(0,	8	sin2	t,	√	√	√	8	cos	t)	·	(−	8	sin	t,	0,	8	cos	t)	dt	=	8π.	By	Exercise	4.1.2,	y(x)	→	nan−1	as	x	→	a.	Thus	2	ab	≤	a	+	b	and	b)	≤	A(a,	b).	√	Let	²	be	so	small	that	s	−	²	nM	>	0.	∂M	M	M	M	M	167	Copyright	©	2010	Pearson	Education,	Inc.	Let	²	>	0	and	choose	N	so	large	that	|bk	−	b|	<	²	for	k	≥	N	.	Consider	the	function
F	(u,	v,	x,	y)	=	(φ1	(u,	v)	−	x,	φ2	(u,	v)	−	y).	d)	Since	f	is	differentiable	at	a,	f	is	continuous	at	a	and	I1	/khk	→	0/f	2	(a)	=	0	as	h	→	0.	Then	there	is	a	sequence	xk	∈	B	such	that	f	(xk	)	does	NOT	converge	to	f	(a).	b)	Let	ε	>	0	and	choose	(by	Archimedes)	an	N	∈	N	such	that	k	>	N	implies	1/k	<	ε2	/2.	k→∞	k→∞	Moreover,	E	is	convex,	closed,	and	bounded,
hence	compact.	,	yn	+zn	)	=	x1	(y1	+	z1	)	+	·	·	·	+	xn	(yn	+	zn	)	=	x1	y1	+	·	·	·	+	xn	yn	+	x1	z1	+	·	·	·	+	xn	zn	=	x	·	y	+	x	·	z.	b)	Let	E	be	sequentially	compact.	There	are	two	cases.	7.4.9.	Modifying	the	proof	of	Theorem	7.43,	we	see	that	f	is	analytic.	If	they’re	both	even,	then	an−k	bk	is	the	product	of	two	positive	numbers,	hence	positive.	4.1.8.	a)	If	f
has	a	local	maximum	at	x0	then	f	(x0	+	h)	−	f	(x0	)	≤	0	for	h	small.	80	Copyright	©	2010	Pearson	Education,	Inc.	Hence	y	=	5	+	2x	+	x2	is	a	semicircle	mounted	on	a	rectangle	with	base	2	and	altitude	5.	If	|x	−	y|	<	δ	then	²	|P	(x)	−	P	(y)|	≤	|m||x	−	y|	<	|m|	<	².	Since	Dφ	is	continuous	on	the	compact	set	R,	there	is	an	M	>	0	(which	depends	only	on	φ
and	R)	such	that	kSx	k	≤	M	for	all	x	∈	R.	x	35	Copyright	©	2010	Pearson	Education,	Inc.	x1	139	Copyright	©	2010	Pearson	Education,	Inc.	Then	φ	is	1–1	on	{1,	2,	.	13.1.6.	a)	If	φ(t)	=	(3	cos	t,	3	sin	t)	and	I	=	[0,	π/2],	then	kφ0	(t)k	=	k(−3	sin	t,	3	cos	t)k	=	3,	hence	Z	Z	π/2	xy	2	ds	=	C	3	cos	t	·	9	sin2	t	·	3	dt	=	27.	c)	Let	ε	>	0.	P∞	7.4.8.	If	f	is	analytic	on
(a,	b)	then	given	x0	∈	(a,	b),	f	(x)	=	k=0	f	(k)	(x0	)(x	−	x0	)k	/k!	has	a	positive	radius	P	∞	of	convergence.	b)	Given	x	∈	(0,	1),	nx	→	∞,	hence	1/(nx)	→	0	as	n	→	∞.	It	follows	that	n	≥	N	implies	|an	+	bn	|	>	|M	|	>	0	>	M	.	A	similar	argument	establishes	an	analogous	inequality	for	lower	integrals.	n→∞	n→∞	n→∞	3.3.9.	a)	f	(0)	=	f	(0	+	0)	=	f	(0)f	(0)	=	f	2	(0)
implies	f	(0)	=	0	or	1.	d)	This	is	the	set	of	points	inside	the	two	branches	of	the	hyperbola	x2	−	y	2	=	1	which	lie	above	the	line	y	=	−1	and	below	the	line	y	=	1.	Exponentiating	this	inequality,	we	have	1≤	Therefore,	n!	n−1	e	≤	n.	for	x	>	1,	f	(x)	is	decreasing	for	x	>	1.	Clearly,	fx	(0,	0)	=	fy	(0,	0)	=	1	both	exist.	Let	r0	=	min{r,	ka	−	xj	k	:	1	≤	j	<	k}.
Since	Nφ	=	(1,	0,	0)	points	toward	the	positive	x	axis,	we	have	ZZ	ZZ	ω=−	(Ry	−	Qz	)	dA	T1	E	1	Z	1−z	Z	=−	Z	Z	1	1−y	Ry	dy	dz	+	Z	0	Qz	dz	dy	0	0	0	Z	1	=−	(Q(0,	y,	1	−	y)	−	Q(0,	y,	0))	dy.	A	similar	argument	establishes	the	opposite	inequality	for	local	maxima.	CHAPTER	3	3.1	Two–Sided	Limits.	(k	−	1)!(n	+	k	−	1)!	2	Thus	x2	Bn00	(x)	+	xBn0	(x)	+	(x2
−	n2	)Bn	(x)	=	0	for	all	x	∈	R.	Combining	this	with	part	a),	we	have	M1	=	kT	k.	The	tetrahedron	∂E	has	four	faces,	S1	in	z	=	0,	S2	in	x	=	0,	S3	in	y	=	0,	and	the	slanted	face	S4	.	√	√	3	x	2	1	2	1/	2	1/	2	43	Copyright	©	2010	Pearson	Education,	Inc.	CHAPTER	6	6.1	Introduction.	On	the	other	hand,	∞	∪∞	j=1	Bj	⊆	V	since	each	Bj	⊆	V	.	α)	Since	f	(x)	=	x	is
increasing,	Mj	=	xj	:=	j/n	and	mj	=	xj−1	:=	(j	−	1)/n.	Since	Z	e	dx	=	x	logp	x	Z	1	∞	du	=∞	up	for	p	≤	1,	this	series	diverges	by	the	Integral	Test.	b)	The	tangent	line	at	(a,	b)	is	y	=	b	+	6a(x	−	a).	Now	x1−p	has	a	finite	limit	as	x	→	∞	if	and	only	if	¯∞	1	−	p	>	0,	i.e.,	p	>	1.	Multiplying	the	first	inequality	by	c	and	the	second	by	b,	we	have	0	≤	ac	≤	bc	and	bc
<	bd.	Hence	xn	→	∞	as	n	→	∞.	b)	0	=	fx	=	cos	x	and	0	=	fy	=	−	sin	y	imply	x	=	(2k	+	1)π/2	and	y	=	jπ,	k,	j	∈	Z.	Set	M	=	−1	−	1/ε.	c)	If	C	=	{(φj	,	Ij	)	:	j	=	1,	.	To	parameterize	C1	,	set	φ(t)	=	(cos	t,	cos	t,	sin	t/	3)	and	I	=	[−π/2,	π/2].	Hence	xn	is	bounded	by	Definition	10.13	b)	Apply	part	a)	with	a	=	0	and	ρ(a,	b)	=	ka	−	bk.	Thus	A	:=	U	=	E	\	V	is	clopen
and	∅	⊂	A	⊂	E.	In	particular,	(φ0	(t0	)×φ00	(t0	))/kφ0	(t0	)k3	=	ν	0	(s0	)×ν	00	(s0	).	By	hypothesis,	P∞	0	≤	ak	≤	a	.	Hence	(arcsin	x)	=	1/	1	−	x	.	Notice,	we	really	only	need	that	one	of	the	series	is	bounded	and	the	other	convergent.	Hence	by	Theorem	7.30,	f	0	(x)	=	k=1	f	(k)	(x0	)(x	−	x0	)k−1	/(k	−	1)!	also	has	a	positive	radius	of	convergence.	Hence
e−1/|x−y|	<	²,	i.e.,	f	(x,	y)	→	0	=	f	(x0	,	y0	)	as	(x,	y)	→	(x0	,	y0	).	Similarly,	mn−1	(pq	−1	)	=	mpn−1	q	−1	=	mp(nq)−1	.	Then	one	the	components	of	Nφ	is	nonzero,	say	∂(φ1	,	φ2	)/∂(u,	v)	6=	0.	We	conclude	by	Theorem	7.10	that	Z	lim	k→∞	1	µ	3	x	cos	0	log	k	+	x	k+x	¶	Z	dx	=	0	1	x3	dx	=	1	.	Therefore,	the	original	series	diverges	when	p	=	log2	(e).	It
follows	from	the	inductive	hypothesis	that	ψ	◦	φ	takes	{1,	2,	.	Thus	(1	−	x/k)k	is	an	increasing	sequence	of	continuous	functions.	Hence	f	+	g	and	f	g	are	continuous	on	R	even	though	f	and	g	are	nowhere	continuous.	E	12.2.3.	Let	²	>	0	and	choose	r	>	0	so	small	that	x	∈	Br	(x0	)	implies	|f	(x)	−	f	(x0	)|	<	².	Suppose	E	is	not	bounded,	i.e.,	choose	xn	∈	E
and	a	∈	X	such	that	ρ(xn	,	a)	>	n	for	all	n	∈	N.	13.6.7.	a)	Let	θ	be	the	angle	between	F	and	T	.	10.1.2.	a)	Suppose	xn	is	bounded.	Since	fx	(x)	>	0	and	fx	is	continuous,	choose	by	the	Sign	Preserving	Property	an	r(x)	>	0	such	that	fx	(y)	>	0	for	y	∈	Br(x)	(x).	If	both	x,	y	∈	/	[0,	N	]	then	|f	(x)	−	f	(y)|	≤	|f	(x)	−	L|	+	|f	(y)	−	L|	<	2²/3	<	².	E	0	0	Let	ω	=	P	dy	dz	+
Q	dz	dx	+	R	dx	dy.	0	b)	If	Ry	=	0	and	Qz	=	−xy	then	R	=	g(x,	z)	and	Q	=	−xyz	+	f	(x,	y).	Since	ak	+	b	and	a	are	both	positive	or	both	negative	for	large	k,	the	terms	1/(ak	+	b)q	k	are	P∞eventually	all	positive	or	all	negative.	Thus	this	system	can	be	solved	by	Cramer’s	Rule	as	indicated.	If	x,	y	∈	E	and	|x	−	y|	<	δ	then	|(f	g)(x)	−	(f	g)(y)|	≤	|g(y)|	|f	(x)	−	f
(y)|	+	|f	(x)|	|g(x)	−	g(y)|	<	M	²	²	+M	=	².	a)	If	kxk	=	1,	Theorem	8.17	implies	kT	(x)k	≤	kT	k.	s	=	0.	Therefore	f	−1	(x)	=	(x+7)/3.	Hence,	C	=	E	∩	V	c	.	But	by	definition,	σ(xn	,	a)	<	1	implies	σ(xn	,	a)	=	0,	i.e.,	xn	=	a.	9.2.2.	Since	E	is	bounded,	there	is	an	M	such	that	kxk	<	M	for	all	x	∈	E.	By	part	b),	then,	fk	→	f	uniformly	on	H.	4.3.4.	Suppose	M	>	0
satisfies	|f	0	(x)|	≤	M	for	all	x	∈	(a,	b).	Then	by	the	Fundamental	Theorem	of	Calculus,	d	dx	5.3.2.	a)	1	≤	x	≤	4	implies	1	≤	Z	4	1	√	Z	t	f	(t	−	x)	dt	=	0	d	dx	Z	0	f	(u)	du	=	f	(−x).	Therefore,	µ	2	¶	x	−	1	x2	y	−	2xy	+	y	−	(x	−	1)2	lim	,	=	(0,	0).	By	Theorem	8.2,	this	can	be	rewritten	as	((x,	y,	z)	−	a)	·	((b	−	a)	×	(c	−	a))	=	0	which	is	equivalent	to	æ	x	−	a1	det	è
b1	−	a1	c1	−	a1	y	−	a2	b2	−	a2	c2	−	a2	ö	z	−	a3	b3	−	a3	ø	=	0	c3	−	a3	by	Theorem	8.9.	8.2.7.	a)	Let	A	represent	the	area	of	P	and	θ	represent	the	angle	between	a	and	b.	Hence	by	part	a),	it	remains	to	see	that	−(s−a)N	e	φ(N	)	→	0	as	N	→	∞.	Since	X	is	compact	and	is	covered	by	{Bx	}x∈X	,	there	exist	x1	,	.	In	particular,	supk≥n	(1/xk	)	=	∞	for	all	n	∈
N,	i.e.,	lim	supn→∞	(1/xn	)	=	∞	=	1/s.	Let	f	(x)	=	1/x	−	1	for	x	6=	0	and	f	(0)	=	0.	If	x0	∈	U	then	B²	(x0	)	⊆	U	for	some	²	>	0,	which	contradicts	the	choice	of	t0	.	√	d)	Substitute	u	=	sin	x,	du	=	cos	x	dx,	i.e.,	dx	=	du/	1	−	u2	,	to	obtain	Z	I	:=	Z	1	log(sin	x)	dx	=	0	0	sin	1	log	u	√	du.	Thus	the	ellipse	is	a	piecewise	smooth	C	∞	surface.	Hence	both	these
sequences	converge	to	the	same	value,	i.e.,	the	series	∞	k+1	/k	converges.	Then	n	≥	N	and	x	∈	E	imply	|(f	+	g)(x)	−	(fn	+	gn	)(x)|	≤	|f	(x)	−	fn	(x)|	+	|g(x)	−	gn	(x)|	<	and	|(αf	)(x)	−	(αfn	)(x)|	=	|α|	|f	(x)	−	fn	(x)|	<	|α|	²	²	+	=²	2	2	²	<	².	13.2.7.	a)	Suppose	C(x)	:=	L((x1	,	y);	(x,	y))	⊂	V	.	The	√	first	2	inequality	is	equivalent	to	x	>	1/3.	By	the	Mean	Value
Theorem,	if	x,	y	∈	(a,	b)	and	|x	−	y|	<	δ,	then	|f	(x)	−	f	(y)|	=	|f	0	(c)|	|x	−	y|	≤	M	|x	−	y|	<	ε.	Since	½	|dj	/dxj	(cos	kx)|	=	k	j	|	sin	kx|	k	j	|	cos	kx|	when	j	is	odd	when	j	is	even,	it	follows	from	Theorem	14.23	that	|dj	/dxj	(ak	(f	)	cos	kx)|	≤	1/k	2	for	k	large.	9.1.7.	a)	Let	B	be	a	closed	ball	of	radius	R	and	center	a.	Thus	f	is	continuous	on	[0,	1].	Since	∂E	and	E0
are	both	of	volume	zero,	choose	cubes	Q1	,	.	∂f1	/∂x	Hence	by	the	Inverse	Function	Theorem,	∂f1−1	/∂x	=	∂f2	/∂y/∆f	,	etc.	It	follows	that	Br	(a)	∪	Bs	(b)	⊆	Bd	(x).	4.3.3.	If	a	and	b	are	roots	of	f	,	then	by	the	Mean	Value	Theorem,	0	=	f	(b)	−	f	(a)	=	(b	−	a)f	0	(c)	for	some	c	∈	(a,	b).	0	0	Differentiating	under	the	integral	sign,	we	have	Z	z	Qx	=	−	px	(x,	y,	v)
dv	+	gx	(x,	y)	and	0	Z	Py	=	z	qy	(x,	y,	v)	dv	+	hy	(x,	y).	Thus	fα0	(0)	=	0	by	the	Squeeze	Theorem.	Thus	f	(x)	=	S(x)	+	f	(a)	−	S(a)	on	V	,	so	set	c	=	f	(a)	−	S(a).	Since	for	each	x	∈	K	:=	E	⊂	V	there	exists	an	open	interval	Ix	such	that	x	∈	Ix	⊂	V	,	it	follows	that	for	each	x	∈	K	there	is	a	C	∞	function	fx	≥	0	such	that	fx	>	0	for	x	∈	Ix	and	fx	=	0	for	x	∈	/	Ix	.	It
follows	that	each	component	of	S	◦	φ	satisfies	|(S	◦	φ)j	(x)	−	(S	◦	φ)j	(y)|	≤	|xj	−	yj	|(1	+	√	nM	ε).	Letting	j	→	∞	in	the	inequality	kfk	−	fj	k	<	ε,	we	obtain	kfk	−	f	k	≤	ε	for	k	≥	N	.	If	f	is	continuous	at	a,	then	by	Theorem	3.22,	f	g	is	too.	Hence	by	the	Squeeze	∞	Theorem,	1	f	(xn	)	dx	→	0	as	n	→	∞.	Suppose	that	δ	=	1/(2N	)	and	|x0	−	x|	<	δ.	If	they’re	both
odd,	then	an−k	bk	is	the	product	of	two	negative	numbers,	hence	positive.	,	n}	onto	A.	Hence	f	(x,	y)	=	1	−	(x	+	1)	+	(y	−	1)	+	(x	+	1)2	+	(x	+	1)(y	−	1)	+	(y	−	1)2	by	Taylor’s	Formula.	In	particular,	(a,	b)	is	not	a	saddle	point.	3.4.9.	Suppose	P	is	a	polynomial	of	degree	0	or	1,	i.e.,	P	(x)	=	mx	+	b.	Since	b	−	a	=	(b	+	c)	−	(a	+	c),	it	is	clear	that	the
Additive	Property	holds.	∂(u,	v,	w)	0	0	4w3	Since	this	determinant	is	nonzero	at	(1,	1,	1,	−1),	we	can	apply	the	Implicit	Function	Theorem	to	verify	such	functions	u,	v,	w	exist.	Since	g	0	(t)	<	0	for	all	x	>	0	and	g(t)	→	−∞	as	t	→	∞,	it	follows	that	g(t),	hence	f	0	(t),	is	negative	for	large	t.	We	obtain	∞	X	∞	X	ak	bk	=	k=1	ak	b	+	s.	Suppose	f	is	continuous	on
E	and	A	is	closed	in	Rm	.	Since	E	is	closed,	it	follows	from	Theorem	10.16	that	x	∈	E.	Conversely,	if	E	is	compact	then	by	part	a),	E	is	sequentially	compact.	Suppose	distinct	points	xj	∈	E	∩	Br	(a)	have	been	chosen	for	each	1	≤	j	<	k.	By	definition,	xn	→	a	as	n	→	∞.	Since	f	is	increasing,	Mj	=	f	(xj	)	and	mj	=	f	(xj−1	)	for	all	j.	Let	f	(x)	=	x	+	1	for	−1	≤	x	≤
0	and	f	(x)	=	2x	−	1	for	0	<	x	≤	1.	b)	If	g	is	not	zero,	then	1/g	is	continuous	on	E,	hence	bounded	by	the	Extreme	Value	Theorem.	It	follows	that	aN	+j	≤	aN	+j−1	r0	≤	aN	+j−2	r02	≤	·	·	·	≤	aN	r0j	,	i.e.,	ak	≤	aN	r0k−N	for	all	k	≥	N	.	c)	0	=	fx	=	ex+y	cos	z,	0	=	fy	=	ex+y	cos	z,	and	0	=	−ex+y	sin	z	imply	cos	z	=	sin	z	=	0.	t	∂xk	b)	By	part	a),	if	f	has
directional	derivative	in	all	directions,	then	all	first	partials	of	f	exist.	Since	f	=	g	on	(−π,	π)	implies	Sf	=	Sg,	we	conclude	that	Sf	converges	to	f	uniformly	on	[a,	b]	⊂	(−π,	π)	and	pointwise	on	(−π,	π).	Then	Z	Z	2π	P	dx	+	Q	dy	=	∂E	(−	sin2	t	−	cos2	t)	dt	=	−2π.	Hence	|xn	+	yn	−	(xm	+	ym	)|	≤	|xn	−	xm	|	+	|yn	−	ym	|	<	ε	for	n,	m	≥	N	.	We	suppose	for
simplicity	that	x	and	y	are	both	finite.	Therefore,	−1	f	(x)	=	1/	log	x.	By	part	d),	xα+β	=	E((α	+	β)L(x))	=	E(αL(x))E(βL(x))	=	xα	xβ	and	xα	·	x−α	=	E(α	−	α)	=	E(0)	=	1,	i.e.,	1/xα	=	x−α	.	,	x2n	}	is	a	partition	of	[0,	1].	n.	c)	The	minimum	of	1/k	for	k	∈	N	is	0	and	0	∈	[−1/k,	1/k]	for	all	k	∈	N.	On	the	other	hand,	since	F	=	(x,	y,	z)	on	∂E,	we	have	ZZ	Z	2π	Z	π/2
F	·	n	dσ	=	∂E	0	(cos2	u	cos3	v	+	sin2	u	cos3	v	+	sin2	u	cos	v)	dv	du	=	4π	6=	0.	Therefore,	3	<	2	+	a	−	2	=	b	<	a.	Then	y	=	f	(a)	=	f	(b)	for	some	a	∈	A	and	b	∈	B.	Consider	the	function	φ−1	◦	f	◦	φ.	102	Copyright	©	2010	Pearson	Education,	Inc.	Since	f	is	continuous,	it	follows	that	f	(xnk	)	→	f	(a)	=	M	.	It	converges	to	the	continuous	function	x2	f	(0)	as	k
→	∞.	By	construction,	xk+1	does	not	equal	any	xj	for	1	≤	j	≤	k.	b)	f	−1	(e)	=	1.	¯	¯	k=0	7.3.11.	√	(j)	(j)	10.1.3.	a)	By	Remark	8.7,	for	all	j	∈	{1,	2,	.	Then	the	path	P	∪	L(x;	y)	goes	from	x0	to	y	and	lies	in	E,	i.e.,	y	∈	U	.	n!	4.4.4.	By	Taylor’s	Formula,	there	is	a	c	between	x	and	0	such	that	µ	¶	(−1)n	x2n+1	(−1)n+1	(sin	c)	·	x2n+2	sin	x	−	x	−	·	·	·	+	=	=:	R.	b)
Apply	a)	for	n	=	0	to	choose	x1	=	w	such	that	x1	/10	≤	x	<	x1	/10	+	1/10.	12.2	Riemann	Integration	on	Jordan	Regions.	The	function	g	:=	−f	has	a	proper	local	maximum	at	x0	,	hence	by	part	a),	such	x1	,	x2	exist	which	satisfy	g	0	(x1	)	>	0	and	g	0	(x2	)	<	0.	c)	By	L’Hˆopital’s	Rule,	x	log	x	→	0	as	x	→	0+.	Let	y0	∈	Q	and	observe	by	the	definition	T	that	S
◦	φ(x)	=	S	◦	φ(y0	)	−	y0	+	x	+	T	(x,	y0	)	=:	z	+	x	+	T	(x,	y0	)	for	x	∈	Q.	3.2.7.	By	Exercise	3.2.3b	and	symmetry,	it	suffices	to	prove	P	(x)/(x	−	x0	)	→	∞	as	x	→	x0	+.	k=1	(−1)	Pn	Pn	PN	Pn	PN	6.1.9.	a)	|	k=1	bk	−	nb|	=	|	k=1	(bk	−	b)|	≤	k=1	|bk	−	b|	+	k=N	+1	|bk	−	b|	≤	k=1	|bk	−	b|	+	M	(n	−	N	).	Suppose	it	holds	for	some	n	≥	3.	0	Therefore,	ZZ	Z	ω=−
T	Z	1	Z	1	R(0,	1	−	z,	z)	dz	+	0	0	Z	Z	1	+	1	Q(0,	y,	1	−	y)	dy	−	Z	1	R(1	−	z,	0,	z)	dz	−	0	P	(x,	0,	1	−	x)	dx	0	1	Q(1	−	y,	y,	0)	dy	+	0	P	(x,	1	−	x,	0)	dx.	(k	+	1)!	a	k=0	c)	Clearly,	E(0)	=	1.	,	cM	}	is	a	partition	of	[c,	d],	such	that	Z	S(f	;	P)	0.	By	Theorem	9.16,	µ	lim	(x,y)→(1,−1)	x−1	,x	+	2	y−1	¶	=	(0,	3).	It	follows	from	the	Squeeze	Theorem	that	|f	(x)|	→	|L|	as	x
→	x0	through	E.	Checking	the	extreme	points	of	H,	f	(1,	0)	=	1,	f	(3,	0)	=	9,	and	f	(1,	2)	=	17.	For	h	so	small	that	x	±	h	∈	I,	we	have	f	(−x	+	h)	=	−f	(x	−	h)	and	−f	(−x)	=	f	(x).	}.	Since	the	absolute	value	of	the	ratio	of	consecutive	terms	of	the	series	defining	Bn	is	|x/2|/((k	+	1)(n	+	k	+	1))	→	0	as	k	→	∞,	Bn	(x)	converges	by	the	Ratio	Test.	By	definition,
xn	−	yn	→	0	as	n	→	∞.	Taking	the	infimum	of	this	inequality,	we	obtain	Vol	(E1	)	≤	Vol	(E2	).	Then	φ	is	the	trivial	parameterization	of	y	=	f	(x),	ψ	is	the	trivial	parameterization	of	x	=	f	−1	(y),	and	φ	◦	τ	(u)	=	φ(f	−1	(u))	=	(f	−1	(u),	f	(f	−1	(u)))	=	(f	−1	(u),	u)	=	ψ(u).	Integrating,	we	obtain	Z	z	Z	z	Q=−	p(x,	y,	v)	dv	+	g(x,	y)	and	P	=	q(x,	y,	v)	dv	+	h(x,	y).	3
3	3	y→0+	0	10	u	1−x+y	−	1	x	0	1	R∞	b)	Since	|e−xy	sin	x/x|	≤	e−xy	≤	e−x/2	for	y	∈	[1/2,	3/2],	π	(e−xy	sin	x/x)	dx	converges	uniformly	on	[1/2,	3/2]	by	the	Weierstrass-M	Test.	By	c),	|x	−	y|	≤	(x1	−	y1	)	·	0	=	0.	ajnn	as	x	→	a	for	any	nonnegative	integers	j1	,	.	Thus	ak+1	<	ak	.	Hence	by	Theorems	4.32	and	4.33,	E(x)	:=	L−1	(x)	is	differentiable	and
strictly	increasing	on	R	with	E	0	(x)	=	1/L0	(y)	for	y	=	E(x).	b)	By	definition,	x	∈	f	−1	(∩α∈A	Eα	)	if	and	only	if	f	(x)	∈	Eα	for	all	α	∈	A	if	and	only	if	x	∈	∩α∈A	f	−1	(Eα	).	b)	It	diverges	for	all	p	>	0	since	log	k	≤	Ck	1/p	implies	1/	logp	k	≥	1/k	for	k	≥	2.	Since	each	a+	k	and	−ak	is	either	ak	or	0,	it	suffices	to	show	there	are	integers	0	<	k1	<	r1	<	k2	<	r2	<
.	11.3.5.	a)	Let	T	=	Df	(a)	and	S	=	Dg(a).	5.1.1.	a)	L(f,	P	)	=	0.5f	(0)	+	0.5f	(0.5)	+	f	(1)	=	17/16.	Thus	k	>	N	implies	k(k/(k	+	1),	sin(k	3	)/k)	−	(1,	0)k	<	ε.	By	definition,	ρ(xn	,	yn	)	→	0	as	n	→	∞.	8.1.10.	Here,	we	must	also	consider	the	possibility	that	the	approximating	sequence	xn	→	a	approaches	through	∂D.	Thus	P	(x)/Q(x)	converges	to	an	/bm	as	x	→
±∞.	2.2.9.	a)	Let	E	=	{k	∈	Z	:	k	≥	0	and	k	≤	10n+1	y}.	b)	Suppose	x	∈	∂(A∩B);	i.e.,	suppose	Br	(x)	intersects	A∩B	and	(A∩B)c	for	all	r	>	0.	N	+1	(SN	f	)(0)	≤	159	Copyright	©	2010	Pearson	Education,	Inc.	π	−π	k=0	14.1.3.	These	formulas	follow	easily	from	the	linear	properties	of	integration.	Suppose	f	0	is	not	strictly	monotone	on	[a,	b],	in	fact,	not
strictly	increasing.	0	150	Copyright	©	2010	Pearson	Education,	Inc.	Is	it	uniform?	Therefore,	E	is	connected.	Let	n	∈	−N	and	x0	>	0.	Since	f	(x)	sin	kx	is	even,	we	have	bk	(f	)	=	2	π	Z	0	π	x	2	−	cos	kx	¯¯π	2	sin	kx	dx	=	(	=	((−1)k+1	+	1).	,	n}	onto	{1,	2,	.	d)	False.	Since	(2n)!	(n	+	1)(n	+	2)	·	·	·	(2n)	=	n!nn	nn	and	1=	n	n+1	n+2	2n	,	,	,...,	=2	n	n	n	n	is	a
partition	of	[1,	2]	with	norm	1/n,	it	is	easy	to	see	that	log(an	)	is	a	Riemann	sum	of	R2	converges	to	1	log	x	dx.	b)	Let	I	=	[a,	b]	and	set	τ	(u)	=	(u	−	a)/(b	−	a).	11.7.7.	a)	The	Lagrange	equations	are	a	=	−2Dxλ,	b	=	−2Eyλ,	and	c	=	λ.	Similarly,	by	part	b)	and	the	Squeeze	Theorem,	I2	/khk	→	0/f	3	(a)	≡	0	as	h	→	0.	This	happens,	by	Exercise	10.5.8,	if	and
only	if	X	is	not	connected.	In	fact,	for	any	x	∈	R,	¯	¶	∞	¯	∞	∞	µ	X	X	¯	sin(x/(k	+	1))	¯	X	|x|	1	1	¯	¯	|f	(x)|	≤	=	|x|	−	=	|x|.	If	k=1	bk	converges,	then	it	follows	from	the	Comparison	P∞	Test	that	k=1	ak	converges.	Since	Q	is	closed	under	subtraction	√	n+3+2	n	+	3	n+n	=	(	n	and	division,	it	follows	that	n2	+	3n	∈	Q.	Then	by	Theorem	8.32,	Br	(x)	⊆	E	o	so	x	∈
E	o	,	a	contradiction.	Then	I	and	J	are	intervals	by	Theorem	10.56.	The	worst	possible	scenario	is	dT	/T	=	±0.02	and	dg/g	=	∓0.01	so	dL/L	=	±0.03.	k=1	k=1	j	0.	Ponpital’s	Rule,	(1	−	1/k)	P→	n	c)	sn	:=	k=1	(k	+	1)/k	2	≥	tn	:=	k=1	1/k.	On	the	other	hand,	f	(x)	=	1/x	is	continuous	on	(0,	1)	but	not	bounded	there	either.	dxn	)	=	2	x2j	dx1	.	∞	c)	Suppose
k=1	|xj	|	<	∞.	d)	True.	Thus	the	claim	holds	for	all	n	∈	N.	a)	Use	part	b)	with	A	=	{1,	2}.	Do	this	for	all	a	∈	∂E	to	define	g	on	∂E.	g	(1)	f	(0)	π	2	2	4.5.2.	a)	By	the	Intermediate	Value	Theorem,	f	((0,	∞))	=	(0,	∞).	9.1.5.	a)	Repeat	the	proofs	of	Remark	2.4	and	Theorem	2.6,	replacing	the	absolute	value	by	the	norm	sign.	p	If	f	(x)	≥	1,	then	f	(x)	≤	f	(x)	<	1	+	f
(x).	14.3.3.	By	Theorem	14.23,	k	2	ak	(f	)	→	0	as	k	→	∞,	in	particular,	|ak	(f	)|	≤	1/k	2	for	k	large.	110	Copyright	©	2010	Pearson	Education,	Inc.	On	the	other	hand,	since	0	≤	(2k	+	1)a2k+1	≤	2ka2k	+	a2k	→	0	as	k	→	∞,	it	follows	from	the	Squeeze	Theorem	that	(2k	+	1)a2k+1	→	0	as	k	→	∞.	13.6	Stokes’s	Theorem.	Then	f	◦	g	−1	=	(f	◦	h−1	)	◦	h	◦	g	−1	is
a	C	p	function	if	and	only	if	f	◦	h−1	is	C	p	.	c)	Since	F	=	(ey	cos	x,	x2	z,	x	+	y	+	z)	implies	div	F	=	−ey	sin	x	+	1,	it	follows	from	Gauss’	Theorem	that	ZZ	Z	3	Z	1	Z	ω=	S	0	0	π/2	Z	(1	−	ey	sin	x)	dx	dy	dz	=	3	0	1	(	0	π	−	ey	)	dy	=	3(1	−	e)	+	3π/2.	Set	C	:=	max{1,	|M	|,	|m|}.	To	show	the	triangle	inequality	holds,	let	a	=	(a1	,	.	r→0	A(Br	(x0	))	B	(x	)	r	0	0
Since	Qx	−	Py	is	continuous	on	E,	it	follows	that	Qx	−	Py	=	0	everywhere	on	E.R	y	To	find	an	f	such	that	∇f	=	F	,	we	must	solve	fx	=	P	and	fy	=	Q.	10.1.1.	Since	ρ(a,	b)	is	a	nonnegative	real	number,	it	follows	from	Theorem	1.9	that	ρ(a,	b)	=	0.	Then	z	=	x	and	y	2	=	x3	.	In	particular,	E	contains	more	than	two	clopen	sets.	Thus,	by	definition,	xn	→	a	as	n
→	∞.	11.4	The	Chain	Rule.	Since	φj	=	1	on	V	,	it	is	also	clear	that	j	j	j	c	Pj	φj	◦	φ−1	=	1	on	φ(V	).	11.7.1.	a)	0	=	fx	=	2x	−	y	and	0	=	fy	=	−x	+	3y	2	−	1	imply	y	=	2x	and	12x2	−	x	−	1	=	0,	i.e.,	x	=	1/3,	−1/4.	n→∞	n→∞	Similarly,	(ax	)y	=	axy	and	a−x	=	1/ax	.	If	(x,	y)	∈	G(f	)	then	x	∈	[xj−1	,	xj	]	for	some	j	and	|x	−	xj	|	<	δ.	Therefore,	2N	sin(u/2N	)	↑	u	as	N
→	∞	for	each	u	∈	[0,	π].	Finally,	by	the	Comparison	Theorem,	if	k	≥	N	,	then	Z	|fk	−	f	|	dV	≤	E	²	Vol	(E)	<	².	0	Similarly,	ZZZ	Z	0	1	Z	1−z	Qy	dV	=	(Q(x,	1	−	x	−	z,	z)	−	Q(x,	0,	z))	dx	dz	E	and	0	ZZZ	Z	1	0	Z	1−y	Rz	dV	=	(R(x,	y,	1	−	x	−	y)	−	R(x,	y,	0))	dx	dy.	On	the	other	hand,	if	P1	is	a	partition	of	[a,	c]	and	P2	is	a	partition	of	[c,	b]	then	P	=	P1	∪	P2	is	a
partition	of	[a,	b]	and	Z	b	(U	)	f	(x)	dx	≤	U	(f,	P	)	=	U	(f,	P1	)	+	U	(f,	P2	).	e)	Case	1.	Since	E	is	closed,	it	is	clear	that	B	r	⊆	E.	But	xn+1	=	2	+	xn	≥	0	by	definition	(all	square	roots	are	nonnegative),	so	the	limit	must	be	x	=	2.	Since	every	singleton	is	closed	(see	Remark	10.10),	E	=	∪x∈E	{x}	is	a	decomposition	of	E	into	closed	sets.	In	particular,	both	φ
and	φ−1	are	continuous	and	must	take	open	sets	(respectively,	compact	sets)	to	open	sets	(respectively,	compact	sets).	Choose	²	so	small	that	C²	<	1	+	η/|∆φ	(x)|.	Now,	repeating	the	proof	of	Theorem	8.32,	we	see	that	the	largest	relatively	open	set	which	is	a	subset	of	A	is	the	union	of	all	sets	U	⊂	A	such	that	U	is	relatively	open	in	E,	and	the	smallest
relatively	closed	set	which	contains	A	is	the	intersection	of	all	sets	B	⊃	A	such	that	B	is	relatively	closed	in	E.	By	Theorem	9.16	and	L’Hˆopital’s	Rule,	µ	¶	y	sin	x	x	lim	,	tan	,	x2	+	y	2	−	xy	=	(1,	0,	1).	y/(y	−	x)	1/(x	−	y)	x	−	y	−y	1	√	√	c)	By	part	a),	x	−	y	=	s2	−	4t	so	x/(x	−	y)	=	s/	s2	−	4t	+	1/2	which	is	the	partial	of	the	first	component	of	f	−1	with
respect	to	s,	i.e.,	the	first	entries	in	the	matrices	D(f	−1	)(s,	t)	and	D(f	−1	)(f	(x,	y))	coincide.	PN	b)	Since	[0,	1]	is	compact,	[0,	1]	⊆	∪N	k=1	Ik	for	some	N	∈	N.	Let	x1	∈	E	∩	U	,	x2	∈	E	∩	V	.	1.2.0.	a)	False.	khk	khk	khk	Since	these	last	two	terms	converge	to	zero	as	khk	→	0,	it	follows	that	f	+g	is	differentiable,	and	D(f	+g)(a)	=	T	+S.	11.7	Optimization.
d)	E	has	no	cluster	points	if	E	is	finite.	Since	φ0	(t)	=	(et	(sin	t	+	cos	t),	et	(cos	t	−	sin	t),	et	),	the	arc	length	is	given	by	Z	2π	L(C)	=	kφ0	(t)k	dt	=	√	Z	3	0	2π	et	dt	=	√	3(e2π	−	1).	Since	3	−	x	≥	3	−	2	=	1,	we	conclude	that	(x	−	3)(3	−	x	−	2x2	)	=	(3	−	x)/(2x2	+	x	−	3)	≥	M	.	√	b)	Since	(	k	k/k)	≥	(1/k),	this	series	diverges	by	the	Comparison	Test.
Therefore,	f	(−x)	=	1/f	(x).	Since	Br	is	open,	the	first	identity	is	trivial.	Multiplying	these	inequalities,	we	have	xj	yj	≤	(supk≥n	xk	)(supk≥n	yk	),	i.e.,	sup	xj	yj	≤	(sup	xk	)(sup	yk	).	14.4.1.	Define	g(x)	=	f	(x)	for	x	∈	[0,	2π)	and	g(2π)	=	f	(0).	b)	By	Taylor’s	Formula,	there	is	a	c	between	x	and	0	such	that	|	cos	x−P2n	(x)|	=	|(−1)n+1	(sin	c)·x2n+1	|/(2n+1)!.
Thus	the	integral	diverges	for	p	<	1	by	part	a).	Thus	vi)	holds	c)	kx	×	yk	=	sin	θkxk	kyk	≤	1	·	kxk	kyk.	Since	x	∈	[αn	,	βn	),	it	is	also	clear	that	βn	−	x	x	−	αn	≤	1	and	≤	1.	If	x	>	0	then	by	Example	2.2	and	Theorem	2.6,	lim	x1/(2n−1)	=	lim	x1/m	=	1.	We	may	suppose	fxx	(a,	b)	6=	0.	8.1.7.	By	symmetry,	we	may	use	any	side	of	Q.	b)	By	Exercise	5.3.7b,
E(x)	→	∞	as	x	→	∞,	and	E(x)	→	0	as	x	→	−∞.	If	yn−1	≥	n	−	1	and	xn−1	≥	1	then	yn	=	xn−1	+	yn−1	≥	1	+	(n	−	1)	=	n	and	xn	=	xn−1	+	2yn−1	≥	1.	14.3.4.	Fix	j	∈	N.	If	xj	6=	0,	notice	that	|xj	|p−2	=	2/(pλ)	so	x2j	=	(2/(pλ))2/(p−2)	.	By	looking	at	the	graph,	we	see	that	f	(E)	=	(−0.5,	0.5).	By	definition,	then,	B	is	finite.	If	we	let	n	→	∞,	then	Z	n→∞	Z	1	lim
L(f,	Pn	)	≤	(L)	f	(x)	dx	≤	(U	)	0	1	f	(x)	dx	≤	lim	U	(f,	Pn	).	Since	L(x)	is	the	inverse	function	of	ax	,	we	have	L(1	+	y)	=	h.	Multiply	xn	<	−1/ε	by	ε/(−xn	)	which	is	positive.	Since	V	c	is	closed	in	Rn	,	it	follows	that	C	is	relatively	closed.	If	x	∈	/	(A∩∂B)∪(B∩∂A),	then	x	∈	(Ac	∪(∂B)c	)∩(B	c	∪(∂A)c	).	Since	f	takes	±1	to	2,	f	−1	(E)	=	[−1,	1].	It	follows	that	{Rj	:	j
=	1,	.	But	since	these	sets	are	c	c	c	nested,	H1c	⊆	·	·	·	⊆	HN	,	so	the	union	of	this	covering	is	HN	.	1	−1	A=ë	π	−1	b)	(1,	0,	0)	=	a(1,	1,	0)	+	b(0,	−1,	1)	+	c(1,	1,	−1)	implies	b	=	c	=	1	and	a	=	0.	7.4.2.	a)	For	|x|	<	1	we	have	by	the	Geometric	series	and	Theorem	7.33	that	∞	∞	k=0	k=0	X	X	x	=x	(−x)5	=	(−1)k	x5k+1	.	P∞	P∞	6.1.2.	k=1	(1/k	−	1/(k	+	1))	=
1	−	limk→∞	1/k	=	1.	∞	e)	Since	|1	−	cos	x|/x2	≤	2/x2	,	the	integral	1	(1	−	cos	x)/x2	dx	converges.	13.4.1.	a)	The	boundary	is	9	=	x2	+	z	2	,	y	=	0,	with	counterclockwise	orientation	when	viewed	from	far	out	the	positive	y	axis.	1	5.3.4.	a)	Let	u	=	log	x	and	dv	=	f	0	(x)	dx.	Thus	xα	sin(1/x)	is	uniformly	continuous	on	(0,	1)	for	all	α	>	0.	Given	ε	>	0,	choose
N	∈	N	such	that	n	≥	N	implies	|xn	−	a|	and	|yn	−	a|	are	both	<	ε/2.	In	particular,	xn	→	a	as	n	→	∞.	Conversely,	if	kfk	−fj	k	<	ε	for	k,	j	≥	N	,	then	fk	(x)	is	Cauchy	in	Y	for	each	x	∈	H.	,	n	+	1}	onto	{1,	2,	.	11.2.11.	¯	j+k	¯	j	+	k¯	k	k=1	k=1	k=N	+1	6.1.12.	Since	it	converges,	it	must	be	bounded.	Since	|∆τ	|	=	∆τ	,	it	follows	from	Theorem	12.65	that	Z	Z	F
(ψ(s,	t)	·	Nψ	(s,	t)	d(s,	t)	=	|∆τ	(s,	t)|F	(φ(τ	(s,	t)))	·	Nφ	(τ	(s,	t))	d(s,	t)	B	B	Z	=	F	(φ(u,	v))	·	Nφ	(u,	v)	d(u,	v).	When	x	=	0,	6.4.9.	By	a	sum	angle	formula	and	telescoping,	we	see	that	2	sin	x	cos((2k	+	2)x)	=	cos(2x)	−	cos((2n	+	2)x).	,	HN	covers	H1	.	0	4.5.5.	a)	Since	L(x)	is	the	inverse	of	ax	and	(ax	)y	=	axy	,	it	is	easy	to	see	that	L(xy	)	=	yL(x)	for	all	x	∈	(0,
∞)	and	y	∈	R.	8.1.9.	By	the	Cauchy–Schwarz	Inequality,	xn	:=	n	X	Ã	|ak	bk	|	≡	(|a1	|,	.	Since	fk	and	f	are	bounded	on	E,	choose	PN1	N2	∈	N	such	that	N2	>	N1	and	k=0	|Sk	(x)	−	f	(x)|	<	²N2	/2	for	all	x	∈	E.	15.3.1.	Since	d(x3	dy	dz	dw	+	y	2	dx	dz	dw)	=	(3x2	−	2y)	dx	dy	dz	dw,	we	have	by	Stokes’s	Theorem	and	spherical	coordinates	that	Z	(x3	dy	dz	dw
+	y	2	dx	dz	dw)	∂Ba	(0,0,0,0)	Z	=	(3x2	−	2y)	d(x,	y,	z,	w)	Z	Ba	(0,0,0,0)	2π	Z	π	Z	π	Z	a	=	Z	0	0	2π	Z	0	Z	π	(3ρ2	cos2	ϕ	−	2ρ	sin	ϕ	cos	ψ)ρ3	sin2	ϕ	sin	ψ	dρ	dϕ	dψ	dθ	0	π	Z	a	(3ρ5	sin2	ϕ	cos2	ϕ	sin	ψ	−	2ρ4	sin3	ϕ	cos	ψ	sin	ψ)	dρ	dϕ	dψ	dθ	µ	Z	¶	Z	π	Z	Z	π	a	2a5	π	3	2	2	=	2π	sin	ϕ	cos	ϕ	dϕ	sin	ψ	dψ	−	sin	ϕ	dϕ	cos	ψ	sin	ψ	dψ	2	0	5	0	0	0	Z	π	a6	π	2	=	2πa6	sin2
ϕ	cos2	ϕ	dϕ	=	.	By	assumption	i),	cos2	x	≤	cos	x.	Similarly,	(∂/∂y)	C(y)	F	·	T	ds	=	Q(x,	y)	for	any	vertical	line	segment	C(y)	⊂	V	terminating	at	(x,	y).	This	means	that	τ	is	increasing	on	each	Jk	,	so	by	the	one-dimensional	change	of	variables	formula	(Theorem	5.34),	we	have	Z	F	(ψ(u))	·	ψ	0	(u)	du	=	J	=	N	Z	X	F	◦	φ	◦	τ	(u)	·	φ0	◦	τ	(u)	|τ	0	(u)|	du	k=1	Jk
k=1	τ	(Jk	)	N	Z	X	Z	F	◦	φ(t)	·	φ0	(t)	dt	Z	F	(φ(t))	·	φ0	(t)	dt	=	=	∪N	τ	(Jk	)	k=1	F	(φ(t))	·	φ0	(t)	dt.	0	13.3.7.	Suppose	that	(φ,	E)	is	a	C	p	parameterization	of	S	which	satisfies	(x0	,	y0	,	z0	)	=	φ(u0	,	v0	)	and	Nφ	(u0	,	v0	)	6=	0.	Hence	by	Cantor’s	Theorem,	the	coefficients	of	S	−	T	must	be	zero,	i.e.,	S	and	T	are	the	same	series.	2.1.4.	Suppose	xn	is	bounded.
Since	[a,	b]	⊂	(0,	2π),	it	follows	7.2.9.	By	Example	6.32,	D	k=1	e	n	(x)|	≤	1/|	sin(c/2)|	for	c	=	max{|a|,	|b|}.	c)	By	b),	xn	+	yn	√	xn	+	yn	xn	−	yn	xn+1	−	yn+1	=	−	xn	yn	<	−	yn	=	.	∂E	E	b)	By	definition	and	Theorem	11.2,	é	i	curl	grad	f	=	det	ë	∂/∂x	fx	j	∂/∂y	fy	ù	k	∂/∂z	û	fz	=	(fzy	−	fyz	,	fxz	−	fzx	,	fyx	−	fxy	)	=	(0,	0,	0).	Thus	yn+1	<	xn+1	<	·	·	·	<	x1	.	Hence
integrating	term	by	term,	µ	¶¶	Z	1	Z	1X	∞	∞	∞	µ	³x´	³x´	¯	X	X	1	1	1	¯1	=	f	(x)	dx	=	sin	dx	=	(−k	cos	1	−	cos	.	11.5.3.	By	the	Mean	Value	Theorem	and	the	assumption	about	Dg,	f	(g(x))	−	f	(g(a))	=	Df	(g(c))Dg(c)(x	−	a)	=	Df	(g(c))(x	−	a)	for	some	c	on	the	line	segment	from	a	to	x.	2M	2M	c)	Let	f	(x)	=	x	=	g(x).	Moreover,	by	Exercise	11.2.8	and
hypothesis,	DS(x)	=	B	=	Df	(x)	for	all	x	∈	V	.	6.2.2.	a)	It	diverges	by	the	Limit	Comparison	Test	since	(3k	3	+	k	−	4)/(5k	4	−	k	2	+	1)	3	→	6=	0	1/k	5	as	k	→	∞.	2	2	b)	If	f	(x)	→	L	and	g(x)	→	M	as	x	→	x0	through	E	then	f	(x)	+	g(x)	→	L	+	M	by	Theorem	3.8,	and	|f	(x)	+	g(x)|	→	|L	+	M	|	by	Exercise	3.1.6.	Thus	by	part	a),	(f	∨	g)(x)	→	(L	+	M	+	|L	−	M	|)/2	=	L	∨
M	as	x	→	x0	through	E.	It	spirals	around	this	cone	from	φ(0)	=	(0,	1,	1)	to	φ(2π)	=	(0,	e2π	,	e2π	).	If	x,	y	∈	[0,	N	],	then	|f	(x)	−	f	(y)|	<	².	SOLUTIONS	TO	EXERCISES	Chapter	8	8.1	Algebraic	Structure.	By	Theorem	14.29,	S	−Sg	converges	everywhere	to	zero.	Compactness	was	used	to	prove	f	g	is	uniformly	continuous	since	both	functions	need	to	be
bounded.	It	is	closed.	b)	We	may	suppose	that	E	is	nonempty.	If	k=1	bk	diverges,	then	it	follows	from	the	Comparison	Test	that	Pb)	∞	k=1	ak	diverges.	,	VM	to	cover	B.	Then	D(2)	f	(a,	b)	=	fxx	(a,	b)h2	always	has	the	same	sign,	and	it	follows	from	Theorem	11.58	that	f	(a,	b)	is	either	a	local	maximum	or	a	local	minimum,	depending	on	the	sign	of	fxx	(a,
b).	8.3.7.	b)	Suppose	E	is	not	connected.	Thus	each	point	x	∈	R	is	a	cluster	point	of	R	\	Q.	−x	is	an	upper	bound	of	−E	and	−x	∈	−E	so	−x	=	sup(−E).	0	13.6.10.	,	|an	|)	·	(|b1	|,	.	Since	2|xy|	≤	(x	+y	),	|xy|/	3	x2	+	y	2	≤	(x2	+y	2	)1/2−1/3	→	0	as	(x,	y)	→	(0,	0).	k→∞	−1	k	2e2	−1	9.6.8.	a)	Since	[0,	1]	∩	Q	is	countable,	it	can	be	covered	by	such	a	collection	of
intervals	by	Remark	9.42.	Something	went	wrong.	In	particular,	a	is	a	cluster	point	of	E.	4x2	−	1	>	0.	Hence	x1	,	.	In	particular,	in	this	case	φ	is	both	1–1	and	onto	and	there	is	nothing	to	prove.	8.4.4.	First,	we	prove	that	relatively	open	sets	are	closed	under	arbitrary	unions,	and	relatively	closed	sets	are	closed	under	arbitrary	intersections.	If	c	<	0
then	−c	∈	P,	so	ac	−	bc	=	(b	−	a)(−c)	∈	P,	i.e.,	ac	>	bc.	Since	f	is	continuous,	f	(xk	)	→	f	(sup	E).	fm	(x)	].	c)	Let	M	∈	R	and	choose	by	Archimedes	an	N	∈	N	such	that	N	>	M	.	CHAPTER	5	5.1	The	Riemann	Integral.	b)	Since	y	4	/(x2	+	y	4	)	≤	1	and	α	>	0,	|f	(x,	y)|	≤	|xα	|	→	0	as	(x,	y)	→	(0,	0).	h2	Combining	this	with	part	b),	we	conclude	that	fyx	(a,	b)	=
fxy	(a,	b).	The	root	is	less	than	or	equal	to	1/2	for	k	≥	N	=	2.	√	5.1.9.	Let	ε	>	0	and	choose	a	partition	P	=	{x0	,	.	It	follows	from	the	Bolzano–Weierstrass	Theorem	that	xn	contains	a	convergent	subsequence,	i.e.,	there	is	an	a	∈	R	such	that	given	r	>	0	there	is	an	N	∈	N	such	that	k	≥	N	implies	|xnk	−	a|	<	r.	n→∞	n→∞	n→∞	n→∞	3.3.10.	Suppose	n	=	1.	If
E	∩	U	=	∅	then	since	A	∩	U	6=	∅,	there	exists	a	point	x	∈	U	∩	(A	\	E).	c)	Let	u	=	log	k	and	note	that	u	→	∞	as	k	→	∞.	h→0+	h→0+	1	+	e1/h	h	f	0	(0)	=	lim	Since	this	limit	is	1	as	h	→	0−,	f	is	not	differentiable	at	x	=	0.	Then	xn−1	−	2	≥	1	so	xn−1	−	2	≤	xn−1	−	2,	i.e.,	xn	=	2	+	xn−1	−	2	≤	xn−1	.	Then	by	definition	and	the	Chain	Rule,	Z	Z	b	Z	b	F	·	T	ds	=
(fx	(φ(t))ψ	0	(t)	+	fy	(φ(t))σ	0	(t))	dt	=	(f	◦	φ)0	(t)	dt	=	f	◦	φ(b)	−	f	◦	φ(a).	c)	Suppose	E	is	open	and	connected	but	not	polygonally	connected.	Thus	by	Theorem	12.26	and	the	Intermediate	Value	Theorem,	there	is	an	tj	∈	[0,	1]	such	that	ZZ	ZZ	E	x2	(f	(x,	y)	−	g(x,	y))	dA	=	c2j	(f	(x,	y)	−	g(x,	y))	dA	=	tj	(1	−	(−1))	=	2tj	=:	cj	.	In	particular,	this	expansion	is
valid	on	R.	Conversely,	if	Br	(x)	∩	E	c	6=	∅	for	all	r	>	0,	then	x	∈	/	E	o	because	E	o	is	open.	0	Therefore,	Z	ZZ	P	dx	+	Q	dy	+	R	dz	=	∂T	(Ry	−	Qz	)	dy	dz	+	(Pz	−	Rx	)	dz	dx	+	(Qx	−	Py	)	dx	dy.	Hence	by	the	Mean	Value	Theorem	there	is	an	x1	∈	(c,	x0	)	such	that	0	<	f	(x0	)	−	f	(c)	=	f	0	(x1	).	Hence,	n	=	1,	2.	Conversely,	if	E	is	convex	and	(x1	,	y1	),	(x2	,
y2	)	∈	E,	then	L((x1	,	f	(x1	));	(x2	,	f	(x2	)))	⊆	E.	a)	By	Exercise	4.1.8,	f	0	(x0	)	=	0.	a)	By	definition,	Dek	f	(a)	=	lim	t→0	f	(a	+	tek	)	−	f	(a)	∂f	=	(a).	3M	3M	3	3M	But	|f	(x)|	≤	P∞	P∞	P∞	k=1	7.2.8.	a)	Fix	n	≥	0	and	x	∈	R.	√	√	b)	Suppose	2	<	a	<	3.	13.5.8.	The	sum	rules	are	obvious.	By	Exercise	10.1.10,	E	is	closed	and	bounded.	b)	By	the	Archimedean
Principle,	given	ε	>	0	there	is	an	N	∈	N	such	that	N	>	π	2	/ε2	.	Let	ε	>	0	and	set	δ	=	1.	Thus	A	∪	B	is	compact.	Since	f	is	continuous	and	periodic,	choose	δ	∈	(0,	2π)	such	that	t	∈	Eδ	:=	[0,	δ]	∪	[2π	−	δ,	2π]	implies	|f	(x	−	t)	−	f	(x)|	<	²	for	all	x	∈	R.	Given	²	>	0	choose	N	so	large	that	bk	>	0	and	|ck	|	<	²/2	for	k	≥	N	.	b)	True.	9.6.7.	a)	Fix	x	∈	[0,	π/2]	and
let	f	(t)	p	=	2t/(4t	−	3x),	t	≥	2.	xn	=	n	does	not	converge,	but	xn	/n	=	1/	n	→	0	as	n	→	∞.	Hence	by	Dirichlet’s	Test,	ak	sin(2k+1)x	converges	for	each	x	∈	(0,	π)∪(π,	2π).	In	particular,	there	are	uncountably	many	x0	∈	(a,	b)	which	satisfy	DR	f	(x0	)	≤	0.	11.6.1.	a)	Since	·	Df	(u,	v)	=	we	have	·	D	−1	3	f	(a,	b)	=	2	−1	5	¸	−1	,	5	3	2	¸−1	·	¸	5/17	1/17	=	.	Thus
∩k∈N	[−1/k,	1/k]	=	{0}.	Then	by	(*)	and	(),	α2	(2)	0	≤	D(2)	f	(c)(h)	=	α2	D(2)	f	(c)(h0	)	<	D	f	(a)(h0	)	<	0,	2	a	contradiction.	Since	f	and	g	are	absolutely	integrable	on	(a,	b),	it	follows	from	Theorem	5.42	and	the	Comparison	Theorem	that	any	finite	linear	combination	of	f,	g,	and	|f	−	g|	is	absolutely	integrable	on	(a,	b).	βn	−	αn	75	Copyright	©	2010
Pearson	Education,	Inc.	By	the	Distributive	and	Commutative	Properties	of	real	numbers,	x·(y+z)	=	(x1	,	.	15.3.3.	Since	d(	n	X	dj	.	5.1.8.	Given	²	>	0,	let	P	be	any	partition	of	[a,	b]	which	satisfies	kP	k	<	²/((f	(b)	−	f	(a)).	Thus	n	≥	N	implies	|(πxn	−	2)/xn	−	(π	−	2)|	≡	2	|(xn	−	1)/xn	|	<	4	|xn	−	1|	<	ε.	Therefore,	f	g	and	αf	belong	to	Cc∞	(Rn	)	when	f	and	g
do.	Instructor’s	Solutions	Manual	An	Introduction	to	Analysis	Fourth	Edition	William	R.	Also	notice	that	(1/kq	k	)/|1/(ak	+	b)q	k	)|	=	|ak	+	b|/k	→	|a|	6=	0.	b)	B	=	[	1	−1	1	].	h→0	h	27	Copyright	©	2010	Pearson	Education,	Inc.	Hence	by	part	a),	φ−1	◦	f	◦	φ	is	1–1	if	and	only	if	it	is	onto.	Conversely,	if	lim	supn→∞	|xn	|	≤	0,	then	0	≤	lim	inf	|xn	|	≤	lim	sup
|xn	|	≤	0,	n→∞	n→∞	implies	that	the	limits	supremum	and	infimum	of	|xn	|	are	equal	(to	zero).	Consider	F	(x,	t)	:=	u(t)	−	x.	Then	|x	−	a|	<	δ	implies	|f	(x)	−	f	(a)|	<	².	Let	xk1	∈	B1	(a).	Since	|	sin(1/x)/xn	|	≤	1/x	for	x	≥	1,	it	follows	from	the	Squeeze	Theorem	that	this	limit	exists	and	equals	0.	The	function	1	+	f	is	absolutely	integrable	on	(a,	b)	by
hypothesis	and	the	fact	that	b	−	a	<	∞.	It	is	true	for	n	=	0R	by	Weierstrass’	Theorem.	a)	Fix	a	>	1	and	for	each	x	∈	R	consider	the	set	Ex	:=	{aq	:	q	∈	Q	and	q	≤	x}.	Thus	the	absolute	maximum	of	f	on	H	is	f	(2,	0)	=	8	and	the	absolute	minimum	of	f	on	H	is	f	(−4/5,	±	21/5)	=	−9/5.	Since	f	is	C	2	on	V	and	D(2)	f	(c)(h)	=	D(2)	f	(a)(h)	+	¶	2	µ	X	∂2f	∂2f	(c)	−
(a)	hj	hk	,	∂xj	∂xk	∂xj	∂xk	j,k=1	choose	δ	>	0	such	that	1	1	D(2)	f	(c)(h0	)	<	D(2)	f	(a)(h0	)	−	D(2)	f	(a)(h0	)	=	D(2)	f	(a)(h0	)	<	0	2	2	(*)	for	c	∈	Bδ	(a).	Thus	it	suffices	to	show	that	if	R	=	[a,	b]×[a2	,	b2	]×	·	·	·	×	[an	,	bn	]	and	Q	=	[b,	c]	×	[a2	,	b2	]	×	·	·	·	×	[an	,	bn	],	then	Vol	(R	∩	Q)	=	0.	By	the	Approximation	Property,	choose	xk	∈	E	such	that	87	Copyright
©	2010	Pearson	Education,	Inc.	9.4	Continuous	Functions.	Moreover,	if	Rj	is	not	a	rectangle	that	intersects	∂E	or	E0	,	then	Mj	−mj	<	².	Since	xn	−	xN	∈	Z,	it	follows	that	xn	=	xN	for	all	n	≥	N	.	Since	Sk	→	f	uniformly	on	E,	choose	N1	∈	N	such	that	k	≥	N1	implies	|Sk	(x)	−	f	(x)|	<	²/2	for	all	x	∈	E.	Therefore,	we	need	only	show	that	there	is	a	continuous
function	f	which	satisfies	these	three	properties.	Thus	n	X	|	Pn	k=1	sin(2k	+	1)x	=	Pn	k=1	(cos((2k)x)	−	sin(2k	+	1)x|	≤	2/|	sin	x|	<	∞	k=1	P	for	each	fixed	x	∈	(0,	π)∪(π,	2π).	P∞	b)	By	Example	7.49,	log2	x5	=	5	log	x/	log	2	=	5	k=1	(−1)k+1	(x	−	1)k	/(k	log	2)	for	0	<	x	<	2.	23	Copyright	©	2010	Pearson	Education,	Inc.	13.1.3.	The	trace	of	φ(θ)	:=	(f	(θ)
cos	θ,	f	(θ)	sin	θ)	on	I	:=	[0,	2π]	coincides	with	the	graph	r	=	f	(θ).	c)	x	6=	0	for	x	∈	(0,	1],	so	f	(x)	:=	e−1/x	is	continuous	on	(0,	1]	by	Theorem	3.22.	Since	any	M0	∈	R	can	be	written	as	αM	for	some	M	∈	R,	we	see	by	definition	that	xn	→	−∞	as	n	→	∞.	Consequently,	¯	¯	¯	sup	Ek	−	inf	Ek	¯=	|f	(x∗	)	−	f	(y	∗	)|	<	².	On	the	other	hand,	if	t	∈	J	then	t	=	f	(x)	for
some	x	∈	[a,	b]	so	by	the	choice	of	α	and	β,	α	≤	t	≤	β,	i.e.,	J	⊆	[α,	β].	d)	Since	by	L’Hˆopital’s	Rule	k	(k/(k	+	1))k2	=	(k/(k	+	1))k	→	e−1	as	k	→	∞,	this	series	converges	by	the	Root	Test.	1.6.2.	By	two	applications	of	Theorem	1.42i,	Q	×	Q	is	countable,	hence	Q3	:=	(Q	×	Q)	×	Q	is	also	countable.	By	Newton’s	method,	x3	+	3x2	+	4xn−1	+	1	2x3	+	3x2n−1
+	1	xn	=	xn−1	−	n−1	2	n−1	=	n−1	.	b)	Since	D(f	◦	g)(a)	=	Df	(g(a))Dg(a)	and	the	determinant	of	a	product	is	the	product	of	the	determinants,	we	have	∆f	◦g	(a)	=	∆f	(g(a))∆g	(a).	Since	L0	(y)	=	1/y,	it	follows	that	E	0	(x)	=	E(x).	1−x	6.6	Additional	tests.	an	=	1	is	Cauchy	and	bn	=	(−1)n	is	bounded,	but	an	bn	=	(−1)n	does	not	converge,	hence	cannot	be
Cauchy	by	Theorem	2.29.	b)	Since	sin	πk	=	0	for	all	k	∈	N	and	cos(0)	=	1,	(1,	sin	πk,	cos(1/k))	→	(1,	0,	1)	as	k	→	∞.	By	Corollary	10.59,	f	−1	(U	)	∩	E	is	relatively	open	in	E.	Suppose	2	<	xn	<	3.	Thus	Z	0.3095	≈	1	Z	1	(x2	−	x6	/3!)	dx	0	then	choose	²	>	0	so	small	that	M	−	²/2	>	0.	g(x)	=	|x|	is	not	differentiable	at	x	=	0,	but	g	2	(x)	=	x2	is.	,	RN	}	such	that
X	(Mj	−	mj	)|Rj	|	0.	Hence,	8k	4	−	10k	2	+	1	>	0	for	all	k	≥	2.	By	L’Hˆopital’s	Rule,	Bα	→	1	as	α	→	0+	and	Bα	→	0	as	α	→	∞.	11.6.7.	By	the	Implicit	Function	Theorem,	solutions	gj	(u(j)	)	exist	for	each	j.	If	x	∈	A	and	y	∈	B,	then	x	+	y	≤	sup	A	+	sup	B,	so	sup(A	+	B)	≤	sup	A	+	sup	B.	This	means	that	S	◦	φ(Q)	is	very	nearly	a	translation,	z	+	Q,	of	Q.
Conversely,	if	L	:=	2n+1	X	ak	=	k=2	as	n	→	∞.	Wade	University	of	Tennessee,	Knoxville	The	author	and	publisher	of	this	book	have	used	their	best	efforts	in	preparing	this	book.	2.4.5.	Let	xn	=	Pn	k	k=1	(−1)	/k	S	:=	for	n	∈	N.	It	diverges	at	x	=	1	(the	harmonic	series)	and	converges	at	x	=	−1	(an	alternating	series).	If	C(x,	y)	ends	in	a	horizontal	line
segment,	then	by	part	a),	fx	=	P	.	d)	Since	√	1/	k(k	p	−	1)	kp	=	→1	kp	−	1	1/k	p+1/2	as	k	→	∞,	it	follows	from	the	Limit	Comparison	Test	and	the	p-Series	Test	that	this	series	converges	if	and	only	if	p	+	1/2	>	1,	i.e.,	p	>	1/2.	Since	ak	↓	0	as	k	→	∞,	the	radius	of	convergence	of	the	power	series	f	(x)	:=	∞	X	(−1)k	ak	xk	k=0	is	greater	than	or	equal	P	to	1
(see	the	proof	of	Exercise	7.3.5),	i.e.,	f	(x)	converges	for	all	x	∈	[0,	1).	Thus	the	original	limit	is	e0	=	1.	0	0	147	Copyright	©	2010	Pearson	Education,	Inc.	Therefore,	Z	1	Z	Z	1	y	2	+z	2	Vol	(E)	=	y2	−1	Z	1	3	dx	dz	dy	=	0	1	(1	+	3y	2	−	3y	4	−	y	6	)	dy	=	−1	88	.	On	the	other	hand,	m0	∈	E	implies	2n	b	≤	m0	,	so	a	=	b	−	(b	−	a)	−a,	i.e.,	n	:=	−m	∈	E.	b)
Suppose	that	f	is	even.	Finally,	if	x	∈	/	V	,	then	x	∈	/	Jrj	(xj	)	for	all	j.	Then	x	≥	−N	≥	−n,	x/n	≥	−1,	and	it	follows	from	Bernoulli’s	Inequality	that	(1	+	x/n)n	↑	ex	for	n	≥	N	.	Since	|xn	sin(x−n	)|	≤	|x|n	and	|x|n	→	0	as	x	→	0	(by	Theorem	3.8),	it	follows	from	the	Squeeze	Theorem	that	xn	sin(x−n	)	→	0	as	x	→	0.	Thus	f	(x)	≤	y	∗	≤	y,	i.e.,	(x,	y)	∈	E.	Given	r	>
0,	ρ(xn	,	a)	is	eventually	smaller	than	r,	e.g.,	Br	(a)	∩	E	contains	xn1	for	some	n1	.	Therefore,	b	=	1	−	1	−	a	<	1	−	(1	−	a)	=	a.	Using	f	(a)f	(a	+	h)	as	a	common	denominator,	we	have	1	1	f	(a)	−	f	(a	+	h)	−	=	.	If	A	∩	B	=	∅,	then	sup(A	∩	B)	:=	−∞	and	there	is	nothing	to	prove.	e)	Since	|yn	|	≤	M	,	|yn	/n|	≤	M/n	→	0	as	n	→	∞.	For	example,	if	a	=	0,	b	=	1,
g(x)	=	x	and	f	(x)	=	−x,	then	g(f	(x))	does	not	exist,	so	the	integral	on	the	right	side	of	part	d)	is	not	defined.	Let	a	6=	0,	f	(x)	=	g(x)	=	x2	,	and	n	=	2.	≥C	|Qj	|	Combining	this	estimate	with	the	estimate	in	the	previous	paragraph,	we	conclude	that	¯	¯	¯	Vol	(φ(Qj	))	¯	¯	−	|∆φ	(x)|¯¯	<	η	¯	|Qj	|	for	j	large,	i.e.,	Vol	(φ(Qj	))/|Qj	|	→	|∆φ	(x)—	as	j	→	∞.	2.5.4.	a)
Since	inf	k≥n	xk	+	inf	k≥n	yk	is	a	lower	bound	of	xj	+	yj	for	any	j	≥	n,	we	have	inf	k≥n	xk	+	inf	k≥n	yk	≤	inf	j≥n	(xj	+	yj	).	(h,k)→(0,0)	(h,k)→(0,0)	(h2	+	k	2	)3/2	h2	+	k	2	√	But	the	path	h	=	k	gives	a	limit	of	−1/	2	6=	0	as	h	→	0+.	If	x	≥	−1	then	δ	≥	−1.	Since	E	\	A0	=	E	∩	f	−1	(A)	=	E	∩	(X	\	V	)	and	X	\	V	is	closed,	it	follows	that	f	−1	(A)	∩	E	is	relatively
closed	in	E.	15	S	0	0	b)	By	the	calculation	which	follows	Definition	13.28,	Nφ	=	(a2	cos	u	cos2	v,	a2	sin	u	cos2	v,	a2	sin	v	cos	v)	points	outward.	If	α	>	1	then	¯	¯	¯	fα	(h)	−	fα	(0)	¯	¯	¯	≤	|h|α−1	→	0	¯	¯	h	as	h	→	0.	Thus	let	g(a)	:=	y.	0	0	145	Copyright	©	2010	Pearson	Education,	Inc.	Thus	ZZ	Z	Z	2π	2	ω=	S	0	=	π	2	((v/2)	cos	u,	(v/2)	sin	u,	v	2	)	·	((v/2)	cos	u,
(v/2)	sin	u,	−v/4)	dv	du	0	Z	2	(v	2	−	v	3	)	dv	=	−	0	2π	.	U	(f,	P	)	=	0.5f	(0.5)	+	0.5f	(1)	+	f	(2)	=	137/16.	By	part	a),	f	(x)	=	f	(mx/m)	=	mf	(x/m).	Thus	∞	X	(a2k	+	a2k+1	)	=	lim	(a2	+	a3	)	+	·	·	·	+	(a2n	+	a2n+1	)	=	lim	s2n+1	n→∞	k=1	converges.	Let	m	=	−b	=	1.	Since	(a,	b,	c)	lies	on	the	cone,	it	follows	that	c2	=	a2	+	b2	=	2c2	,	i.e.,	c	=	0.	d)	implies	a).
But	a	∈	E,	so	Bs	(a)	∩	E	=	{a}.	Suppose	n	and	m	are	even	and	m	>	n.	By	Theorems	10.56	and	10.62,	f	([0,	1])	is	connected.	Hence,	by	the	Extreme	Value	Theorem,	there	is	an	M	>	0	such	that	|f	(x)|	≤	M	for	all	x	∈	[a,	b].	By	the	Heine–Borel	Theorem,	there	are	points	xj	∈	E	such	that	E	⊂	SN	PN	∞	functions,	it	is	C	∞	.	4.3.12.	If	k(x,	y)	−	(x0	,	y0	)k	<	δ/2
then	|x	−	y|	=	|x	−	x0	+	y0	−	y|	≤	|x	−	x0	|	+	|y	−	y0	|	≤	2k(x,	y)	−	(x0	,	y0	)k	<	δ.	Therefore,	ZZ	ZZZ	ω=	(Px	+	Qy	+	Rz	)	dV.	f)	Since	n(1	+	(−1)n	)	+	n−1	((−1)n	−	1)	=	2n	when	n	is	even	and	−2/n	when	n	is	odd,	lim	supn→∞	xn	=	∞	and	lim	inf	n→∞	xn	=	0.	Therefore,	S	is	the	Fourier	series	of	f	.	Since	N	∪N	k=1	τ	(Jk	)	=	τ	(∪k=1	Jk	)	=	τ	(J)	=	I,	we
conclude	that	Z	Z	g(ψ(u))kψ	0	(u)k	du	=	g(φ(t))kφ0	(t)k	dt.	Let	f	(x)	=	2	−	x	for	x	≤	1,	f	(x)	=	1/x	for	x	≥	1,	g(x)	=	1	−	x	for	x	≤	0	and	g(x)	=	−x	for	x	>	0.	c)	Let	Q	be	a	cube	contained	in	R	with	sides	less	than	δ/nn/2	,	and	notice	that	kx	−	yk	<	δ	for	all	x,	y	∈	Q.	It	follows	from	L’Hˆopital’s	Rule	that	(1	+	x/k)k	↑	ex	for	x	∈	[−1,	1].	However,	|f	|	=	1	is
integrable	on	[0,	1].	A	similar	argument	handles	the	case	L	<	0.	Thus	x2k+1	→	0	as	k	→	∞,	but	xn	is	NOT	bounded.	b)	By	definition,	Z	1	Z	1	L(f,	Pn	)	≤	(L)	f	(x)	dx	≤	(U	)	f	(x)	dx	≤	U	(f,	Pn	)	0	0	for	each	n	∈	N.	c	a	b)	By	Green’s	Theorem,	Z	Z	1	Z	C	Z	x	ω=−	1	(2x	−	f	(x))	dy	dx	=	0	x2	Z	(2x3	−	2x2	)	dx	−	0	1	(x2	−	x)f	(x)	dx	=	−1/6.	log	k	log	k	log	k	u	But
the	limit	of	this	last	quotient	is	(by	L’Hˆopital’s	Rule	twice)	lim	u→∞	2	log	u	·	(1/u)	2	log	u	=	lim	=	0.	Choose	N	∈	N	so	large	that	N	>	(b	−	a)/δ	and	set	xk	=	a	+	k(b	−	a)/N	.	Then	k	≥	N	implies	kyk	−	ak	≤	kxk	−	ak	+	kxk	−	yk	k	<	ε.	P∞	k	k	b)	True.	Then	Qx	−	Py	=	2	and	we	have	by	Green’s	Theorem	that	1	2	Z	ZZ	x	dy	−	y	dx	=	∂E	dA	=	Area	(E).
Combining	these	statements,	if	q	∈	Q	then	q	=	n/m	so	f	(qx)	=	f	³n	´	³x´	x	=	fn	=	(f	n	(x))1/m	=	f	n/m	(x)	=	f	q	(x)	m	m	for	x	∈	R.	Conversely,	if	Bs	(a)	∩	E	=	{a},	then	this	set	does	not	contain	infinitely	many	points,	so	a	is	not	a	cluster	point	by	definition.	2	13.3.3.	Parameterize	this	ellipsoid	using	φ(u,	v)	=	(a	cos	u	cos	v,	b	sin	u	cos	v,	c	sin	v)	and	E	=	[0,
2π]×[−π/2,	π/2].	√	3	If	y	=	x	then	2x	=	6x	+x,	√	i.e.,	x	√=	0	or	x	=	±1/	6.	11.2.10.	a	Rb	Rb	Rb	It	follows	that	(U	)	a	g(x)	dx	<	a	f	(x)	dx+².	10.3.1.	a)	The	closure	is	E	∪	{0},	the	interior	is	∅,	the	boundary	is	E	∪	{0}.	Fix	j	∈	N.	Then	C	\	B	=	{0}	and	f	(C)	=	f	(B)	=	[0,	1].	C	Ω	R	Suppose	iii)	holds	and	let	x0	∈	E	.	By	symmetry,	we	may	suppose	that	x	=	∞.
Since	(2x	−	x)0	=	2x	log	2	−	1	>	1	for	all	x	≥	2,	i.e.,	2x	−	x	is	increasing	on	[2,	∞).	Are	there	any	others?	10.6.1.	a)	f	(0,	π)	=	(0,	1]	is	not	open	and	we	don’t	expect	it	to	be;	f	[0,	π]	=	[0,	1]	is	compact	and	connected	as	Theorems	10.61	and	10.62	say	it	should;	f	(−1,	1)	=	(−	sin	1,	sin	1)	is	open,	big	deal;	f	[−1,	1]	=	[−	sin	1,	sin	1]	is	compact	and
connected	as	Theorems	10.61	and	10.62	say	it	should.	12.1.4.	a)	Since	∂Br	=	B	r	\	Bro	,	it	suffices	to	show	Bro	(a)	=	Br	(a)	and	Br	(a)	=	E	:=	{x	:	kx	−	ak	≤	r}.	10.4.8.	a)	Suppose	not,	i.e.,	∩Hk	=	∅.	Let	P	be	any	partition	which	satisfies	xj−1	=	x0	−	δ	and	xj	=	x0	+	δ	for	some	j.	h→0	h→0	h	000	f[0,∞)	(0)	=	lim	Thus	f	000	(0)	does	not	exist.	a∈H	Since	H	is
compact,	there	are	points	a1	,	a2	,	.	If	y	=	−x	then	−2x	=	−6x	√	+x,√i.e.,	x	=√0	or	x	=	±1/	2.	Thus	use	Theorem	7.10.	f	(x)	f	(y)	c2	It	follows	that	Mj	(f	1/m	)	−	mj	(f	1/m	)	≤	(Mj	(f	)	−	mj	(f	))/Cm	and	Mj	(1/f	)	−	mj	(1/f	)	≤	(Mj	(f	)	−	mj	(f	))/c2	.	Then	|f	(xn	)	−	L|	<	²	for	all	n	≥	N	,	i.e.,	Then	there	is	an	²0	>	0	such	that	given	n	>	0	i.e.,	|f	(xn	)	−	L|	≥	²0	.
Hence	(φ,	[a,	b])	and	(ψ,	[f	(a),	f	(b)]))	are	orientation	equivalent.	s	=	−∞.	P∞	If	an	/bn	→	∞	then	an	≥	bn	for	n	large.	6.4.3.	a)	Since	[(k	+	1)3	/(k	+	2)!]/[k	3	/(k	+	1)!]	=	(k	+	1)3	/(k	3	(k	+	2))	→	0	as	k	→	∞,	this	series	converges	absolutely	by	the	Ratio	Test.	Thus,	x	∈	U	\	U	o	⊆	∂U	.	It	is	open.√	E	=	{x	√	1}	∪	{(x,	1)	:	−	2	≤	x	≤	2}	∪	{(x,	−1)	:	−	2	≤	x	≤	2}.
On	the	other	hand,	if	p	>	1,	choose	q	>	0	such	that	p	−	1	>	q	and	a	constant	C	such	that	log	x	≤	xq/p	for	all	x	≥	C.	∂E	∂E	E	E	13.6.6.	Let	²	>	0.	By	part	b),	n	2X	−1	n	2X	−1	(a2k	(f	)	+	b2k	(f	))	≤	2	k=2n−1	(a2k	(f	)	+	b2k	(f	))	sin2	kh.	√	d)	Let	f	(x)	=	x/(x	+	1)	for	x	>	0.	Hence	by	reversingP	∞	c)	By	inspection,	j=1	akj	=	0	for	all	k	∈	N	but	k=1	akj	=	1	if	j	=
1	and	0	if	j	>	1.	Thus	é	ù	4	0û.	e)	Since	1/n	+	(−1)n	=	1/n	+	1	when	n	is	even	and	1/n	−	1	when	n	is	odd,	inf	E	=	−1	and	sup	E	=	3/2.	11.5.4.	Let	B	=	[bij	]	be	the	n	×	n	matrix	that	represents	Df	(a)	and	set	S(x)	=	B(x).	xv	yv	zv	xv	yv	zv	(φ	◦	ψ)0	·	(φu	×	φv	)	=	(xu	ut	+	xv	vt	)	13.4	Oriented	Surfaces.	12.5.1.	If	(f	g)(x)	6=	0	then	f	(x)	6=	0	and	g(x)	6=	0.	If	1/b
≤	0	then	b	=	b2	(1/b)	≤	0	a	contradiction.	If	x,	a	∈	(0,	1)	and	|x	−	a|	<	δ,	then	|f	(x)	−	f	(a)|	=	|x	−	a|	|x	+	a	+	1|	≤	3|x	−	a|	<	3	ε	=	ε.	Since	x	≥	0,	f	0	(x)	=	ex	+	cos	x	≥	1	+	cos	x	≥	0.	3.4.1.	a)	Let	ε	>	0	and	let	δ	=	ε/3.	,	xN	}	be	the	cluster	points	of	E.	By	Remark	5.46	and	Exercise	5.4.2c,	this	last	integral	converges	absolutely	since	p	+	1	>	1.	We
conclude	that	F	and	T	are	orthogonal.	6.2.8.	Notice	that	ak	+	b	6=	0	for	k	∈	N,	since	otherwise,	b/a	=	−k	∈	Z.	Define	xj	’s	by	1	1	1	<	x2	=	−	δ	<	x3	=	+δ	n	n−1	n−1	1	<	x4	=	−	δ	<	·	·	·	<	x2n−3	=	1	−	δ	<	x2n−2	=	1.	If	Ry	=	x	and	Qz	=	0,	then	R	=	xy	+	f	(x,	z)	and	Q	=	g(x,	y).	Plugging	λ	=	µ	=	1	into	the	first	and	third	of	these	equations,	we	have	3x2	−
6x	+	3	=	0	and	12z	2	+	12z	3	=	0,	i.e.,	x	=	1	and	z	=	0,	−1.	Let	r	>	0	be	so	small	that	rt1	<	`/2	and	set	w(x,	t)	=	u(x,	t)	+	r(t	−	t1	).	26	Copyright	©	2010	Pearson	Education,	Inc.	Hence,	by	our	opening	observation,	f	(2k)	(0)	=	0	for	all	k	∈	N.	yn	y	yyn	yyn	¯	¯	¯	xn	x	¯¯	1	|x|	¯	¯	yn	−	y	¯	≤	|yn	|	|xn	−	x|	+	|yyn	|	|yn	−	y|.	If	f	is	integrable	on	[a,	b],	then	by
Corollary	5.23,	so	are	f	n	for	all	n	∈	N.	,	xk	have	been	chosen	so	that	xk	∈	E	∩	Br	(a)	and	s	:=	min{ρ(x1	,	a),	.	It	is	neither	open	nor	closed.	3	−1	−1	5.2.1.	a)	|x	+	1|	=	x	+	1	if	x	≥	−1	and	|x	+	1|	=	−x	−	1	if	x	≤	−1.	It	follows	from	the	inductive	hypothesis	that	ψ	◦	φ	is	1–1	on	{1,	2,	.	Since	0	≤	ey/k	≤	eM/k	,	it	follows	that	|ey/k	−	ey/k	cos(x/k)|	=	|ey/k	|	|1
−	cos(x/k)|	≤	eM/k	(1	−	cos(M/k))	→	0	uniformly	on	E	as	k	→	∞.	11.5.9.	Let	F	(t)	=	f	(a	+	tu)	and	observe	by	definition	that	F	0	(t)	=	lim	h→0	F	(t	+	h)	−	F	(t)	f	(a	+	tu	+	hu)	−	f	(a	+	tu)	=	lim	=	Du	f	(a	+	tu).	Conversely,	if	this	set	has	a	finite	supremum	s	for	all	a	∈	X,	then	let	b	=	a	∈	X.	³P	´1/p	Pn	n	p	p	b)	Let	a	=	.	A	similar	argument	shows	that	{x	∈	X	:
ρ(x,	a)	>	r}	and	{x	∈	X	:	ρ(x,	a)	<	s}	are	both	open,	hence	E	:=	{x	∈	X	:	s	≤	ρ(x,	a)	≤	r}	=	{x	∈	X	:	ρ(x,	a)	>	r}c	∩	{x	∈	X	:	ρ(x,	a)	<	s}c	is	closed.	√	√	b)	Let	n	→	∞	in	the	identity	yn+1	=	xn+1	yn	.	c)	Repeat	the	proof	of	Theorem	3.8,	replacing	the	absolute	value	by	the	norm	sign.	Solving	these	simultaneous	equations,	we	have	b	=	−1,	c	=	0,	and	a	=	d	=
1,	i.e.,	x	−	y	+	w	=	1.	Since	x2	cos	kx	is	even,	we	can	integrate	by	parts	twice	to	verify	Z	Z	π	2	π	2	4	4(−1)k	ak	(x2	)	=	x	cos	kx	dx	=	−	x	sin	kx	dx	=	π	0	kπ	0	k2	for	k	6=	0.	Thus	∪k∈N	[−k,	1/k)	=	(−∞,	1).	10.5.1.	a)	Let	R	=	[a,	b]	×	[c,	d].	e	n	(x)	:=	Pn	sin(kx)	≤	1/|	sin(x/2)|	for	x	∈	(0,	2π).	7.4.4.	Since	P	(k)	(x)	=	0	for	k	>	n	and	x	∈	R,	the	Taylor	series
truncates.	Thus	f	0	(x)	is	analytic	on	(a,	b).	Clearly,	∂g	∂fj	(x)	=	f1	(x1	)	·	·	·	(xj	)	·	·	·	fn	(xn	).	If	x	=	1,	0	≤	y	≤	2,	then	f	(x,	y)	=	1	+	2y	+	3y	2	which	takes	its	minimum	at	y	=	−1/3	which	is	out	of	range.	Conversely,	if	E	\	C	=	E	∩	V	for	some	open	V	,	then	C	=	E	∩	V	c	,	so	C	is	relatively	closed	in	E.	4	Copyright	©	2010	Pearson	Education,	Inc.	Then	Nφ	=	(0,
−2	cos	v,	−2	sin	v)	points	inward,	the	wrong	way.	Since	this	set	is	closed,	the	limit	a	also	belongs	to	it.	Thus	the	limit,	a,	exists	by	xn+1	=	1	−	1	−	xn	,	as	n	→	∞,	we	have	a	=	1	−	1	−	a,	i.e.,	a	=	0,	1.	Therefore,	Z	Z	π/2	2	π	F	·	T	ds	=	√	cos2	t	dt	=	√	.	1.3.4.	If	m	is	a	lower	bound	of	E	then	so	is	any	m	e	≤	m.	Since	(n	−	1)/(2n	−	1)	→	1/2	as	n	→	∞,	this	factor
is	bounded.	Thus	k=0	P∞	k=0	(−1)	k	2k	x	/(2k)!	for	x	∈	R.	2.1.6.	If	xn	=	a	for	all	n,	then	|xn	−	a|	=	0	is	less	than	any	positive	ε	for	all	n	∈	N.	8.3.1.	a)	This	is	the	plane	without	the	x-axis.	5.4.6.	a)	Choose	a	<	b0	<	b	such	that	f	(x)/g(x)	<	2L	+	1	for	all	b0	<	x	<	b.	Thus	U	=	B1	(0,	0)	∩	B√2	(2,	0).	3.3.3.	By	Exercise	3.1.6,	|f	|	is	continuous	on	[a,	b].	a)	Df	(x,
y)	=	[	1	−1	]	and	Dg(x,	y)	=	[	2x	2y	].	Hence	by	Exercise	7.2.7,	k=1	fk	gk	converges	uniformly	on	E.	1.5.5.	a)	By	definition,	x	∈	f	−1	(∪α∈A	Eα	)	if	and	only	if	f	(x)	∈	Eα	for	some	α	∈	A	if	and	only	if	x	∈	∪α∈A	f	−1	(Eα	).	But	φ0	is	never	zero,	so	|φ0	|	=	±φ0	.	It	follows	that	[	V	=	BX	(x)	∩	Y	=:	U	∩	Y.	b)	(a	+	b)n	=	an	+	nan−1	b	+	·	·	·	+	bn	≥	an	+	nan−1	b.
Therefore,	lim	sups→∞	I1	≤	².	If	∇f	(t0	)	6=	0,	then	either	u0	(t0	)	6=	0	or	v	0	(t0	)	6=	0.	Let	a	=	−4,	b	=	−1,	and	c	=	2.	Then	by	DeMorgan’s	Law,	∪Hkc	=	X,	in	particular,	{Hkc	}	is	an	c	open	cover	of	H1	.	9.2.1.	If	E	is	compact,	then	by	Heine-Borel,	E	is	closed	(and	bounded).	khk	khk	khk	Thus	by	definition,	T	is	differentiable	at	a	and	DT	(a)	=	T	.	1.5.2.
a)	f	decreases	and	f	(−1)	=	5,	f	(2)	=	−4.	Hence,	w	=	st,	i.e.,	E(x	+	y)	=	E(x)E(y).	n	1	1	1	Taking	the	limit	of	this	last	inequality	as	b	→	∞,	we	see	that	f	(xn	)	is	absolutely	integrable	on	[1,	∞)	for	each	n	>	1.	Thus	the	original	series	converges	by	the	Comparison	Test.	2|I|	Now	f	is	bounded	on	I	by	M	:=	supx∈I	|g(x)|	+	|f	(xk−1	)|	+	|f	(xk	)|.	Let	xn	=	(−1)n
/n.	Then	A	is	finite,	so	we	can	choose	a	finite	collection	of	rectangles	PM	{Rj	:	j	=	N	+	1,	.	This	function	is	continuous,	and	f	(0)	=	−1	<	0	<	3	=	f	(1).	Since	Br	(x)	intersects	A,	it	follows	that	x	∈	∂A.	Since	f	is	continuous	at	any	t	6=	0,	Ωf	(t	−	h,	t	+	h)	gets	smaller	as	h	→	0,	so	ωf	(t)	=	0	for	t	6=	0.	By	Green’s	Theorem,	Z	ZZ	Z	F	·	T	ds	=	π/2	Z	2	(y	−	0)	dA
=	C	E	0	r2	sin	θ	dr	dθ	=	0	8	.	Then	by	the	Implicit	Function	Theorem	there	is	an	open	set	V	⊂	R2	containing	(a,	b)	and	a	continuously	differentiable	f	:	V	→	R	such	that	z	=	f	(x,	y)	satisfies	F	(x,	y,	z)	=	0	for	(x,	y)	∈	V	.	c)	If	a	+	b	6=	0,	then	I	6=	0	for	all	n	∈	N	whether	odd	or	even.	Thus	either	x0	∈	U	or	x0	∈	V	.	If	it	holds	for	n	then	n	+	1	<	2n	+	1	≤	2n	+
n	<	2n	+	2n	=	2n+1	.	10.3.10.	b)	By	Cauchy-Schwarz,	|a	·	c	−	b	·	d|	=	|a	·	c	−	a	·	b	+	a	·	b	−	b	·	d|	≤	kak	kb	−	ck	+	kbk	ka	−	dk	≤	kb	−	ck	+	ka	−	dk.	±1/3	111	Copyright	©	2010	Pearson	Education,	Inc.	Of	course,	their	intersection	is	∅	because	2	∈	/	Q.	In	both	cases,	f	is	onto	by	the	Intermediate	Value	Theorem.	C2	1	Therefore,	the	integral	over	both
pieces	is	4	+	1	=	5.	Conversely,	if	x	∈	f	(f	−1	(E)),	then	x	=	f	(a)	for	some	a	∈	f	−1	(E).	By	Theorem	5.34,	f	◦	φ	·	|φ0	|	is	integrable	on	[a,	b].	xn	=	1	converges	and	yn	=	(−1)n	is	bounded,	but	xn	yn	=	(−1)n	does	not	converge.	1.2.7.	a)	Since	|x	+	2|	≤	|x|	+	2,	|x|	≤	2	implies	|x2	−	4|	=	|x	+	2|	|x	−	2|	≤	4|x	−	2|.	Pare	∞	∞	c)	Given	x	∈	E,	let	x	=	k=1	bk	/3k
where	bk	6=	1.	Thus	ap0	=	A(p0	).	5.6.8.	a)	Let	E	:=	{x	∈	[a,	b]	:	f	(x)	>	y0	}.	,	xN	∈	K	such	that	K	⊂	j=1	Ixj	.	It	follows	from	the	Squeeze	Theorem	that	f	is	differentiable	at	0	∈	I,	and	its	derivative	is	zero.	Hence	k=1	ak	converges	absolutely	by	the	Ratio	Test,	since	¯	¯	µ	µ	¶¶−1	¯	ak+1	¯	1	1	¯	¯	≡	1	+	(k	+	1)	sin	→	¯	ak	¯	k+1	2	as	k	→	∞	by	L’Hˆopital’s
Rule.	Therefore,	the	latter	must	be	uncountable	by	the	argument	of	Remark	1.43.	Since	supk≥n	xk	≤	supk≥N	xk	<	s	+	²	for	all	n	≥	N	,	it	follows	that	s	−	²	<	s	≤	sup	xk	<	s	+	²	k≥n	for	n	≥	N	,	i.e.,	lim	supn→∞	xn	=	s.	G3	149	Copyright	©	2010	Pearson	Education,	Inc.	Let	x	∈	R	and	choose	N	such	that	n	≥	N	implies	|yn	|	<	δ.	Checking	the	critical	point	f
(0,	0)	=	0,	and	extreme	points	of	H,	f	(1,	1)	=	3,	f	(1,	−1)	=	−1,	f	(−1,	1)	=	−5,	and	f	(−1,	−1)	=	3,	we	conclude	that	the	absolute	maximum	of	f	on	H	of	f	on	H	is	f	(1,	1)	=	f	(−1,	−1)	=	3,	and	the	absolute	minimum	of	f	on	H	of	f	on	H	is	f	(−1,	1)	=	−5.	Conversely,	let	a	∈	R,	²	>	0,	and	set	I	=	(f	(a)	−	²,	f	(a)	+	²).	10.2.3.	If	a	is	a	cluster	point	for	E,	then	let
xn	∈	(B1/n	(a)	∩	E)	\	{a}.	Adding	these	inequalities,	we	obtain	f	(x)	+	g(x)	≤	f	(y)	+	g(y).	5.3.8.	a)	By	Exercise	5.3.7,	L	is	differentiable	and	strictly	increasing,	hence	1–1,	on	(0,	∞),	and	takes	(0,	∞)	onto	R.	Since	q	>	1,	it	follows	from	Raabe’s	Test	that	k=1	ak	converges	absolutely.	,	xk	have	been	chosen	so	that	xk	∈	E	∩	(a	−	r,	a	+	r)	and	s	:=	min{|x1	−
a|,	.	7.5.4.	The	line	tangent	to	y	=	f	(x)	at	(xn−1	,	f	(xn−1	))	has	equation	y	=	f	(xn−1	)	+	f	0	(xn−1	)(x	−	xn−1	).	Since	f	(a),	f	(b)	∈	f	(E),	it	follows	that	[f	(a),	f	(b)]	⊂	f	(E).	Fix	k	∈	{1,	2,	.	Therefore,	ah	−	1	y	1	=	=	h	L(1	+	y)	tL(1	+	1/t)	for	t	=	1/y.	¡	¢	7.4.11.	Since	c	∈	I,	we	have	by	hypothesis	that	this	last	quotient	is	≤	M	.	1.2.9.	a)	mn−1	+	pq	−1	=	mqq
−1	n−1	+	pq	−1	nn−1	=	(mq	+	pn)n−1	q	−1	.	cos	x	cos2	x	4.3	The	Mean	Value	Theorem.	If	x	=	1	and	z	=	−1,	then	3	+	y	−	4	=	1	and	−1	+	3	+	w	=	0,	i.e.,	y	=	2,	w	=	−2.	If	x0	=	3	is	the	initial	guess,	then	|x0	−	π|	<	.15	and	by	the	proof	of	Theorem	7.58,	|xn	−	π|	≤	(0.1736732)n	(.15),	i.e.,	|x4	−	π|	<	0.000136465.	Thus	it	converges	if	and	only	if	x	∈
[−1,	1).	0	Thus	by	hypothesis	iii),	Z	r	=	Qx	−	Py	=	z	rz	(x,	y,	v)	dv	+	gx	−	hy	=	r(x,	y,	z)	−	r(x,	y,	0)	+	gx	−	hy	.	g(0,	π)	=	{1}	is	connected	as	Theorem	10.62	says	it	should;	g[0,	π]	=	{0,	1}	is	compact	but	not	connected–note	that	Theorem	10.61	does	not	apply	since	g	is	not	continuous;	g(−1,	1)	=	{−1,	0,	1}	is	not	open	and	we	don’t	expect	it	to	be;	g[−1,
1]	=	{−1,	0,	1}	is	compact	but	not	connected–note	that	Theorem	10.61	does	not	apply	since	g	is	not	continuous.	Since	f	(100)	=	0.00999,	n	=	100	terms	will	estimate	the	value	to	an	accuracy	of	10−2	.	g)	It	diverges	by	the	Root	Test,	since	has	a	limit	supremum	of	4/π.	Since	xn	,	yn	>	0,	the	limit	must	be	2.	If	A	∩	B	6=	∅,	then	use	the	Monotone
Property.	,	xN	such	that	N	[	K⊂	Br(xj	)	(xj	).	Choose	N	∈	N	such	that	n	≥	N	implies	xn	∈	(x	−	²,	x	+	²).	(1	+	t3	)2	(1	+	t3	)2	As	t	→	−∞,	(x,	y)	→	(0,	0)	and	dy/dx	=	(2t	−	t4	)/(1	−	2t3	)	→	−∞.	Thus	Pn	(x)	=	n	X	(−1)k−1	(x	−	1)k	k	k=0	.	In	particular,	f	is	nonconstant.	Since	cos	x	has	no	limit	as	x	→	∞,	this	integral	diverges.	If	xk	∈	B,	then	(*)	kxk	−	ak	≤	M	for
all	k	∈	N.	Since	cos	x	6=	0	for	x	∈	[0,	1],	it	follows	from	√	x2	Theorem	3.22	that	e	sin	x/	cos	x	is	continuous	on	[0,	1].	Clearly,	xn	is	Cauchy.	Since	this	last	inequality	is	satisfied	only	when	xn	=	xN	,	it	follows	that	xn	=	xN	:=	a	for	large	n.	The	author	and	publisher	make	no	warranty	of	any	kind,	expresses	or	implied,	with	regard	to	these	programs	or	the
documentation	contained	in	this	book.	,	x4	=	−.3176721	.	b)	It	converges	by	the	Comparison	Test	and	the	Geometric	Series	Test,	since	0	≤	(k	−	1)/(k2k	)	≤	1/2k	.	P∞	b)	The	partials	sums	of	k=1	(−1)k	assume	only	the	values	−1,	0,	hence	are	bounded.	Thus	by	Theorem	4.23,	there	is	an	x0	∈	(x1	,	x2	)	such	that	f	0	(x0	)	=	f	0	(x3	).	c)	1/(n	+	1)	≤	0.0005
implies	(n	+	1)	≥	2000,	i.e.,	n	≥	1999.	If	b	>	0,	then	for	ε	=	b,	a	<	b	−	ε	=	0.	Let	L	=	sup{f	(x)	:	x	∈	(a,	b)}.	b)	Set	F	(x,	y,	z)	=	x2	+	y	2	+	z	2	+	sin(x2	+	y	2	)	+	3z	+	4	−	2.	b)	Repeat	the	proof	of	Theorem	3.26.	Therefore,	f	is	continuous	at	a.	The	boundary	is	y	=	±x,	z	=	0,	and	z	=	1	−	y	2	,	x	=	±1.	15.2.5.	a)	Suppose	(U,	g)	and	(V,	h)	are	charts	from
different	atlases	of	M	.	Since	d	−	c	≥	2,	choose	x2	∈	[c,	d]	such	that	x	−	x2	=	±1.	If	we	let	s	:=	min{r,	ρ(x1	,	a),	.	Conversely,	if	x	∈	V	=	U	∩	Y	,	then	there	is	ball	BX	,	open	in	X,	such	that	x	∈	BX	⊂	U	.	Since	F	(u0	,	v0	)	=	(0,	0)	and	∂(F1	,	F2	)	∂(φ1	,	φ2	)	=	6=	0,	∂(u,	v)	∂(u,	v)	it	follows	from	the	Implicit	Function	Theorem	that	there	is	an	open	set	V
containing	(x0	,	y0	)	and	a	continuously	differentiable	function	g	:	V	→	R2	such	that	φ1	(g(x,	y))	=	x	and	φ2	(g(x,	y))	=	y.	If	you	want	a	proof	which	avoids	this	“enrichment”	result,	notice	by	hypothesis,	there	exist	closed,	nonoverlapping	intervals	J1	,	.	Also,	by	L’Hˆopital’s	Rule,	limx→0	f	0	(x)	=	2	2	2	2	limx→0	(2/x3	)/e1/x	=	limx→0	(6/x4	)/(2e1/x	/x3	)	=
limx→0	(3/x)/e1/x	=	limx→0	(3/x2	)/(2e1/x	/x3	)	=	0.	By	the	Cauchy–Schwarz	Inequality	and	hypothesis,	Fk	(φ(t))	·	φ(t)	→	F	(φ(t))	·	φ(t)	uniformly	on	I,	as	k	→	∞.	4.5.1.	a)	By	the	Inverse	Function	Theorem,	(f	−1	)0	(2)	=	1	1	=	.	,	JN	such	that	τ	0	6=	0	on	each	Jk0	and	J	=	∪N	k=1	Jk	.	c)	By	repeating	the	steps	in	b),	we	see	that	the	original	expression	is
rational	if	and	only	if	n(n+7)	=	n2	+7n	=	m2	for	some	m	∈	N.	∂gm	/∂xn	(a)	Therefore,	∂h/∂xj	(a)	=	∇f	(g(a))	·	∂g/∂xj	(a).	Then	for	x	6=	0	we	have	f	(x)g(x)	=	1/x	which	has	no	limit	as	x	→	0.	By	part	a,	then,	|f	−1	(x)|	≤	1/|f	0	(c)|	<	∞	for	all	x	∈	I.	Its	speed	is	k(−2a	sin	2t,	2a	cos	2t)k	=	2a.	P∞	9.6.1.	Since	fk	≥	0,	the	partial	sums	of	k=1	fk	are	increasing	on
[a,	b].	∂xj	∂xj	Therefore,	by	Exercise	9.3.6	and	hypothesis,	g	and	gxj	are	all	continuous	on	V	.	b)	The	domain	of	f	is	all	(x,	y)	∈	R2	such	that	x	6=	0,	y	6=	0,	and	x/y	6=	(2k	+	1)π/2	for	k	∈	Z	(for	example,	tan(π/2)	is	undefined).	By	part	a,	xq	−	aq	xn	−	an	=	·	(xq(m−1)	+	·	·	·	+	aq(m−1)	)−1	=:	y(x)	·	z(x).	For	s	≥	b	>	a,	|e−(s−a)t	φ(t)|	≤	M	e−(b−a)t	,	hence
by	∞	the	Weierstrass	M-Test,	0	e−(s−a)t	φ(t)	dt	converges	uniformly	on	[b,	∞).	Hence	by	induction,	xn	>	yn	>	1	for	all	n	∈	N.	2.4.6.	By	Exercise	1.4.4c,	if	m	≥	n	then	|xm+1	−	xn	|	=	|	m	X	(xk+1	−	xk	)|	≤	k=n	µ	¶	m	X	1	1	1	1	=	1	−	−	(1	−	)	.	2.5.9.	If	xn	→	0,	then	|xn	|	→	0.	Thus	by	induction	this	inequality	holds	for	all	n	∈	N.	12.1.9.	By	Exercise	12.1.5,
we	may	suppose	E	is	closed.	12	2	1	3	+	=	.	Hence,	it	follows	from	Exercise	1.4.4c	and	definition	that	n	X	9	4	4	1	.4999	·	·	·	=	+	lim	=	+	lim	10	n→∞	10k	10	n→∞	10	k=2	Similarly,	µ	1	1−	n	9	¶	=	4	1	+	=	0.5.	10	10	µ	¶	n	X	9	1	=	lim	1	−	=	1.	To	prove	that	they	are	equal,	notice	by	the	Quotient	Rule	that	µ	g(x)	f	(x)	g(x)	¶0	f	(x)g	0	(x)	.	e)	Let	f	(x)	=	x	and
g(x)	=	x2	.	In	R2	,	an	`1	ball	at	the	origin	is	{(x,	y)	:	|x|	+	|y|	<	1}.	If	c	>	0	then	c	∈	P	and	it	follows	from	ii)	that	bc	−	ac	=	(b	−	a)c	∈	P,	i.e.,	bc	>	ac.	Hence	by	the	Comparison	Theorem,	f	is	improperly	integrable	on	[a,	b).	If	Ry	=	x	and	Qz	=	2z,	then	R	=	xy	+	f	(x,	z)	and	Q	=	z	2	+	g(x,	y).	c)	Since	any	number	is	either	algebraic	or	transcendental,	R	is
the	union	of	the	set	of	algebraic	numbers	and	the	set	of	transcendental	numbers.	Thus	by	Theorem	5.48,	¯Z	∞	¯	Z	∞	Z	¯	¯	1	∞	n	¯	0≤¯	f	(x	)	dx¯¯	≤	xn−1	|f	(xn	)|	dx	=	|f	(u)|	du.	Let	δ	>	0	and	let	{x1	,	.	,	ρ(xN	,	a)},	then	Bs	(a)	∩	E	⊆	{a}.	h→0	h→0	h	h	f	0	(x)	=	lim	d)	By	the	Inverse	Function	Theorem	and	part	c),	L	is	differentiable	on	(0,	∞)	and	L0	(x)	=	1
aL(x)	=	1	.	,	x2n−2	}	then	Mk	(f	)	=	1	for	all	odd	k,	M2	(f	)	=	1,	and	Mk	(f	)	=	0	for	all	even	k	>	2.	Conversely,	suppose	E	∩	Br	(a)	\	{a}	is	nonempty	for	every	r	>	0.	Similarly,	é	i	∇	·	(F	×	G)	=	∇	·	det	ë	F1	G1	j	F2	G2	ù	k	F3	û	=	(∇	×	F	)	·	G	−	(∇	×	G)	·	F.	Thus	limx→0	tan(1/x)	does	not	exist.	Since	sup	E	∈	/	E,	we	also	have	x1	<	sup	E.	∂g1	/∂xn	(a)	ê	ú	..	b)	Fix
x	∈	R.	Hence	Z	2	lim	log(an	)	=	n→∞	¯2	log	x	dx	=	(x	log	x	−	x	¯	=	log	1	1	R2	1	log	x	dx.	11.6.9.	Suppose	Fz	(a,	b,	c)	6=	0.	5.1.6.	Let	m	be	the	number	of	points	in	E.	Since	the	series	is	identically	zero	when	x	=	0,	π,	2π,	it	converges	everywhere	on	[0,	2π].	dxn	j=1	we	have	by	Stokes’s	Theorem	that	Z	ω=2	∂Q	n	Z	X	j=1	(−1)j−1	xj	dx1	.	,	xn	}	of	[a,	b]



such	that	U	(f,	P	)	−	L(f,	P	)	<	2	c	ε.	14.2.6.	Let	Z	2π	∆N	(x)	=	f	(x	−	t)φN	(t)	dt	−	f	(x).	Since	2k	p	≤	k=1	1/	k	√	+	1	converges	if	and	√	√	k	2p	+	1	+	k	p	≤	2	k	2p	+	1	implies	1/(2	k	2p	+	1)	≤	1/(	k	2p	+	1	+	k	p	)	≤	1/(2k	p	),	it	follows	from	the	Comparison	Test	that	the	original	series	converges	if	and	only	if	p	>	1.	Thus	k=1	|Ik	|	≥	1.	Moreover,	by	the
Binomial	Formula,	the	inductive	hypothesis,	and	what	we	just	proved,	a2n−1	+	b2n−1	a2n	+	b2n	=	(an−1	+	2)2	+	(2an−1	+	bn−1	+	2)2	=	a2n−1	+	4an−1	+	4	+	(2an−1	+	2)2	+	2bn−1	(2an−1	+	2)	+	b2n−1	=	c2n−1	+	2(an−1	+	2)	+	(2an−1	+	2)2	+	2(cn−1	−	1)(2an−1	+	2)	=	c2n−1	+	(2an−1	+	2)2	+	2cn−1	(2an−1	+	2)	=	(2an−1	+	cn−1	+	2)2	≡
c2n	.	Thus	f	(C	\	B)	=	{0}	6=	∅	=	f	(C)	\	f	(B).	By	using	the	change	of	variables	u	=	x	+	h,	du	=	dx,	and	a	sum	angle	formula,	we	have	Z	1	π	ak	(f	(x	+	h))	=	f	(x	+	h)	cos	kx	dx	π	−π	Z	π	1	=	f	(u)(cos	ku	cos	kh	+	sin	ku	sin	kh)	du	π	−π	=	ak	(f	)	cos	kh	+	bk	(f	)	sin	kh.	In	particular,	(P,	Q,	R)	◦	φ	=	(36,	sin	t,	cos2	t).	By	part	a),	|ax0	−	ax	|	=	ax0	−	ax	<	ar	−
aq	=	aq	·	(ar−q	−	1)	<	ax0	(a1/N	−	1)	<	ε.	By	hypothesis,	g	and	f	are	differentiable	on	I	\	{a},	the	limit	of	g/f	is	of	the	form	0/0	or	∞/∞,	and	the	limit	of	g	0	/f	0	is	zero.	Since	q	<	x	and	x	<	y	imply	q	<	y,	it	is	clear	by	definition	that	ax	≤	ay	.	4.4.3.	By	Taylor’s	Formula,	there	is	a	c	between	x	and	0	such	that	µ	¶	xn	ec	xn+1	ex	−	1	+	x	+	·	·	·	+	=	.	By	part
b),	given	any	x	∈	E	the	set	Ux	which	can	be	polygonally	connected	to	x	through	E	is	open.	d)	Since	·	0	1	Df	(x,	y,	z)	=	1	0	0	−1	¸	·	and	yz	Dg(x,	y,	z)	=	0	xz	2y	¸	xy	,	0	we	have	·	D(f	+	g)(x,	y,	z)	=	yz	1	xz	+	1	2y	xy	−1	¸	and	D(f	·	g)(x,	y,	z)	=	[	y	2	(z	+	1)	2xyz	+	2xy	−	2yz	y	2	(x	−	1)	]	.	Then	f	satisfies	the	hypotheses	with	α	=	1	and	I	=	[−1,	1],	but	f	is	not
differentiable	at	0	∈	[−1,	1].	b)	0	=	fx	=	2x	+	2y	and	0	=	fy	=	2x	+	6y	imply	x	=	y	=	0.	By	Example	2.21,	|I|1/n	and	(b	−	a)1/n	→	1	as	n	→	∞.	√	√	√	√	1.2.6.	a	+	b	−	2	ab	=	(	a	−	b)2	≥	0	for	all	a,	b	∈	[0,	∞).	Choose	N1	so	large	that	n	≥	N1	and	x	∈	E	imply	|fn	(x)	−	f	(x)|	<	²/(3M	)	and	|gn	(x)	−	g(x)|	<	²/(3M	).	Choose	s	so	small	that	N	sn	<	².	If	n	≥	N	and	x	∈
[a,	b]	then	½	|fn	(x)g(x)	−	f	(x)g(x)|	=	|fn	(x)	−	f	(x)|	|g(x)|	0	choose	N	so	large	that	n	≥	N	and	x	∈	E	imply	|fn	(x)	−	f	(x)|	<	²/	max{2,	|α|	+	1}	and	|gn	(x)	−	g(x)|	<	²/	max{2,	|α|	+	1}.	If	x2k	=	log	k	and	xn	=	0	for	n	6=	2k	,	then	x2k	−	x2k−1	=	log(k/(k	−	1))	→	0	as	k	→	∞,	but	xk	does	not	converge,	hence	cannot	be	Cauchy	by	Theorem	2.29.	0	Since	the
integral	of	φN	is	1,	notice	that	Z	2π	∆N	(x)	=	(f	(x	−	t)	−	f	(x))φN	(t)	dt.	Since	fn	→	f	uniformly	and	n1/n	→	1,	as	n	→	∞,	choose	an	N	so	large	that	n	≥	N	implies	|fn	(x)	−	f	(x)|	1/r	for	some	r	<	R.	If	distinct	points	x1	,	.	Thus	the	directional	derivatives	of	f	exist.	Then	g	is	periodic	and	of	bounded	variation	on	[−π,	π]	and	continuous	on	any	interval	[a,	b]	⊂
(−π,	π).	Therefore,	(f	(h,	k)	−	f	(0,	0)	−	∇f	(0,	0)	·	(h,	k))/k(h,	k)k	→	0	as	(h,	k)	→	(0,	0).	If	Qk	is	a	cube	of	side	s	which	contains	xk	then	N	X	|Qk	|	=	N	sn	<	².	d)	Since	(x/3x	)0	=	(3x	·	1	−	x	log	3	·	3x	)/32x	=	(1	−	x	log	3)/3x	<	0	for	x	≥	1,	k/3k	is	decreasing.	Then	n	≥	N	implies	|(f	·fn	)(x)−f	2	(x)|	=	|f	(x)|	|fn	(x)−f	(x)|	<	ε	for	x	∈	[a,	b],	i.e.,	f	·	fn	→	f	2
uniformly	on	[a,	b]	as	n	→	∞.	By	the	Archimedean	Principle,	E	is	nonempty.	2	Therefore,	|xn+1	−	xn	|	=	|f	(xn	)/f	(xn	)|	≤	M	|xn	−	xn−1	|P	/²0	<	r02n+1	≤	r0n+2	.	Suppose	x1	<	x2	<	·	·	·	<	xn	in	E	have	been	chosen	so	that	sup	E	−	1/n	<	xn	<	sup	E.	Then	Ac	:=	Y	\	A	is	open	in	Y	,	so	by	Corollary	10.59,	A0	:=	f	−1	(Ac	)	∩	E	is	relatively	open	in	E.	Let	ε	>
0.	d)	Let	x	=	t2	,	y	=	t2	,	z	=	t,	and	let	t	run	from	1	to	0.	4	d)	Set	δ	=	x/k.	Since	c	=	0	implies	a	=	b	=	0	and	K	has	no	tangent	plane	at	the	origin,	there	are	no	tangent	planes	to	this	cone	which	are	parallel	to	x	−	y	+	z	=	5.	d)	By	Theorem	1.18,	the	closure	of	Q	is	R	and	the	interior	of	Q	is	the	empty	set,	so	the	boundary	of	Q	is	R.	c)	Let	f	(x)	=	2|x|	−	sin2	x
and	suppose	first	that	x	≥	0.	Thus	f	/g	is	locally	integrable	and	|f	|/|g|	≤	h/ε	holds	everywhere	on	(a,	b).	If	u	satisfies	the	heat	equation,	then	wxx	−	wt	=	−r	<	0	on	V	.	But	by	√	(−1,	1)	with	(arcsin	x)	=	1/	0	2	2	trigonometry,	cos	y	=	1	−	x	.	h→0	ρh	ρ	h→0	h	fxj	(ρx)	=	lim	Thus	by	the	Chain	Rule,	homogeneity,	and	the	Power	Rule,	ρk−1	n	X	j=1	xj	fxj	(x)	=	n
X	j=1	xj	fxj	(ρx)	=	d	d	k	(f	(ρx))	=	(ρ	f	(x))	=	kρk−1	f	(x).	The	sets	Am	:=	{	nk	:	k	∈	N	and	−	2m	≤	k	≤	2m	}	are	finite,	hence	at	most	countable.	Fix	x	∈	[a,	b].	If	E	is	sequentially	compact,	then	by	part	b),	E	is	closed	and	bounded.	Let	f	(x)	=	xα	/ex	.	|t1	−	t0	|	|t2	−	t0	|	kbk2	Thus	θ	is	0	or	π.	Hence	by	Jensen’s	inequality,	¶¶1/q	µZ	|f	(x)|p	dx	≤	0	1	¶1/q	φ(|f
(x)|p	)	dx	0	µZ	=	1	¶1/q	|f	(x)|q	dx	.	On	the	other	hand,	given	x	∈	E,	there	is	a	sequence	xj	∈	Br	such	that	xj	→	x	as	j	→	∞.	2	2	2	Thus	{xn	}	is	increasing	and	bounded	above,	so	xn	→	x.	11.5.5.	Let	F	be	defined	as	in	the	proof	of	Theorem	11.35.	Set	f	(y)	=	j=1	fxj	(y).	Let	xn	→	∞	and	set	yn	=	xn	+	δ/2.	If	0	<	x1	<	x2	then	Z	x2	dt	x2	−	x1	L(x2	)	−	L(x1	)	=	>
>	0.	Parameterize	C1	by	φ1	(t)	=	(0,	−t,	1	+	2t),	I1	=	[−1/2,	0];	C2	by	φ2	(t)	=	(t,	0,	1	−	t),	I2	=	[0,	1];	and	C3	by	φ3	(t)	=	(−t,	(1	+	t)/2,	0),	I3	=	[−1,	0].	Taking	the	limit	of	xn−1	+	1	−	1	=	xn	we	see	that	a2	+	a	=	0,	i.e.,	a	=	−1,	0.	12.2.2.	If	x	∈	[0,	1]×·	·	·×[0,	1],	then	0	≤	x2j	≤	1.	d)	DR	g(x)	=	DR	f	(x)	+	1/n	>	DR	f	(x)	≥	0	for	all	but	countably	many	x	∈
(a,	b).	Thus	(x,	y)	∈	R	and	it	follows	from	Theorem	10.16	that	R	is	closed.	2	Therefore,	−2	|x	+	1|	dx	=	1/2(1)	+	1/2(9)	=	5.	We	check	the	boundary	in	four	pieces.	b)	Suppose	∂E	=	E.	11.3.2.	a)	Since	∇f	=	(2x,	2y)	=	(2,	−2)	at	(1,	−1),	and	the	equation	of	the	tangent	plane	is	z	=	f	(1,	−1)	+	∇f	(1,	−1)	·	(x	−	1,	y	+	1),	we	have	z	=	2x	−	2y	−	2.	1.3.8.	Since	A
⊆	E,	any	upper	bound	of	E	is	an	upper	bound	of	A.	b)	All	we	need	do	is	make	the	relative	closed	balls	Ej	in	part	a)	nonoverlapping.	Indeed,	choose	a,	b	such	that	K	⊆	[a,	b]	⊂	(0,	2π)	and	define	fe	on	(0,	2π)	\	[a,	b]	to	be	linear,	i.e.,	its	157	Copyright	©	2010	Pearson	Education,	Inc.	Thus	n	=	(a,	b,	0)	and	an	equation	of	the	tangent	plane	is	ax	+	by	=	a2	+
b2	=	1.	4.4	Taylor’s	Theorem	and	l’Hˆ	opital’s	Rule.	Notice	that	g(U	∩	V	)	=	h(U	∩	V	)	=	{u	:	u	=	(x2	,	.	xn	xn	1+1	2	xn	(1	+	1	−	xn	)	2.3.3.	Case	1.	By	part	a)	and	the	law	of	cosines,	θs	kν	0	(s)	−	ν	0	(s0	)k2	=	2	−	2	cos	θs	=	4	sin2	.	We	conclude	√	√	that	f	(±2/	5,	±1/	5)	=	0	is	the	minimum	and	f	(±1/	5,	∓2/	5)	=	5	is	the	maximum.	Thus	∪k∈N	[−1/k,	0]	=
[−1,	0].	Thus	a	∈	f	−1	(E)	∩	B.	Thus	by	Stokes’s	Theorem	ZZ	Z	curl	F	·	n	dσ	=	F	·	T	ds	=	−1/12.	b)	Let	fn	(x)	=	1/n	and	gn	(x)	=	x.	b)	By	the	definition	of	the	operator	norm,	°	°	°	Df	(a)(h)	°	kDf	(a)(h)k	kDf	(a)k	khkk	°	°	≤	=	kDf	(a)k	°	khk	°	=	khk	khk	for	all	h	6=	0.	Let	f	(a)	=	g(a)	=	0	and	x	∈	I	\	{a}.	This	function	is	continuous,	and	f	(0)	=	−2	<	0	<	e	+	1
=	f	(1).	Differentiating	term	by	term,	we	obtain	E	0	(x)	=	solves	the	initial	value	problem	y	0	−	y	=	0,	y(0)	=	1.	Then	U,	V	are	nonempty	open	sets,	U	∩	V	=	∅	and	U	∪	V	=	E.	parametrization	of	the	surface	φx	(Ex	).	Thus	E	is	sequentially	compact	by	definition.	8.2.3.	All	we	have	to	do	is	find	two	lines	which	lie	in	parallel	planes.	Then	3(n	+	1)2	+	3(n	+
1)	+	1	=	3n2	+	3n	+	1	+	6n	+	6	≤	2	·	3n	+	6(n	+	1).	Taking	the	limit	of	this	inequality	as	²	→	0,	we	obtain	(U	)	a	g(x)	dx	≤	Rb	Rb	Rb	f	(x)	dx.	P∞Thus	it	follows	that	Sf	is	uniformly	P∞	Abel	summable	to	f	.	0	b)	This	boundary	is	a	triangle	(oriented	in	the	clockwise	direction	when	viewed	from	the	origin)	consisting	of	three	line	segments,	C1	(which	lies	in
the	yz	plane),	C2	(which	lies	in	the	xz	plane),	C3	(which	lies	in	the	xy	plane).	c)	By	Fej´er’s	Theorem,	σN	f	→	f	uniformly.	Hence,	0	<	1	−	x	<	2	and	x2	−	1	<	0.	|x1	−	x0	|	=	¯¯	0	f	(x0	)	¯	²0	74	Copyright	©	2010	Pearson	Education,	Inc.	On	the	other	hand,	since	f	(a)	is	a	local	minimum	we	see	by	Taylor’s	Formula	that	0	≤	f	(a	+	h)	−	f	(a)	=	D(2)	f	(c)(h)	()
for	c	∈	L(a;	a	+	h)	and	khk	sufficiently	small.	Hence	it	follows	from	Dini’s	Theorem	that	(1	−	x/k)k	→	e−x	as	k	→	∞	uniformly	on	any	compact	subset	of	R.	4.3.8.	By	the	Mean	Value	Theorem,	0	<	f	(x1	)	−	f	(x2	)	=	(x1	−	x2	)f	0	(c1	)	for	some	x1	<	c1	<	x2	and	0	<	f	(x3	)	−	f	(x2	)	=	(x3	−	x2	)f	0	(c2	)	for	some	x2	<	c2	<	x3	.	0−∞	=	∞	is	not	indeterminate.
Hence	by	Theorem	2.29,	xn	is	Cauchy.	90	Copyright	©	2010	Pearson	Education,	Inc.	Hence	1/M	<	1/|g(x)|	<	1/²0	for	all	x	∈	[a,	b]	and	it	follows	that	1/g	is	bounded	on	[a,	b]	and	1/(2M	)	<	1/|gn	(x)|	<	²0	for	large	n	and	all	x	∈	[a,	b],	i.e.,	1/gn	is	defined	and	bounded	on	[a,	b].	Thus	by	the	Monotone	Convergence	Theorem,	xn	→	x	for	some	x	∈	R.	b)	If	E	=
α∈A	Eα	is	empty	or	contains	a	single	point,	then	E	is	connected	by	definition.	Define	f	and	g	on	[0,	1]	by:	f	(x)	=	1	when	x	∈	Q	and	f	(x)	=	0	when	x	∈	/	Q,	and	g(x)	=	1	+	(	x)−1	.	Also	notice	that	n	X	|gk	(x)|2	=	k=1	Hence	for	each	j,	hj	(x)	=	x22	+	·	·	·	+	x2n	a2	−	x21	a	−	x1	=	=	.	In	particular,	Z	y	Z	x	f	(x,	y)	=	Q(x,	v)	dv	+	P	(u,	0)	du.	Then	(y	−	²,	y	+	²)	∩
E	⊂	{x1	,	.	Thus	(V,	h)	is	a	chart	in	A	which	satisfies	h(V	)	=	B1	(0)	and	h(x)	=	0.	Hence	¯	n	¯	n−1	¯X	¯	X	¯	¯	ak	bk	¯	≤	2M	|an	|	+	2M	|ak+1	−	ak	|.	,	ρ(xk	,	a)},	then	by	hypothesis	there	is	an	xk+1	∈	E	∩	Bs	(a).	0	Similarly,	Z	0	Z	C2	Z	1	P	dx	+	Q	dy	+	R	dz	=	−	and	Z	Q(0,	y,	1	−	y)	dy	0	Z	1	P	dx	+	Q	dy	+	R	dz	=	−	C2	1	R(0,	1	−	z,	z)	dz	+	0	Z	1	P	(x,	0,	1	−
x)	dx	+	Q(1	−	y,	y,	0)	dy	+	0	1	P	(x,	1	−	x,	0)	dx.	If	ak	=	1/k	2	and	bk	=	1/k,	then	ak	/bk	→	0	as	k	→	∞	and	k=1	ak	converges,	but	k=1	bk	does	not.	d)	The	closure	is	R,	the	interior	is	∅,	the	boundary	is	R.	Therefore,	Sf	=	Sg,	i.e.,	S	is	the	Fourier	series	of	f	.	π	4k	2	−	1	k=1	P2n	−1	Hence	it	follows	from	parts	a)	and	b)	that	k=1	|φ(xk	)	−	φ(xk−1	)|	>	2
log(2n	)/π	for	all	n	∈	N.	Since	ta	+	x0	=	ua	+	x0	implies	t	=	u,	C	is	simple.	√	7.3.9.	The	coefficients	of	this	power	series	are	given	by	ak	=	((−1)k	+	4)−k	.	ak	=	1/k	is	strictly	decreasing	to	0	but	k=1	1/k	diverges.	By	the	Product	Rule	and	the	Fundamental	Theorem	of	Calculus,	Z	b	Z	b	(f	0	(x)g(x)	+	f	(x)g	0	(x))	dx	=	a	(f	(x)g(x))0	,	dx	=	f	(b)g(b)	−	f	(a)g(a).
Therefore,	¯Z	¯	¯	M	|r|3	M	|r|3	¯¯	2π	3	¯≤	|R|	≤	(cos	θ	+	sin	θ)	cos(2θ)	dθ	16π,	¯	¯	6	6	0	i.e.,	|R|/r2	→	0	as	r	→	0.	b)	Suppose	E	is	clopen	and	∅	⊂	E	⊂	X.	(k	+	1)log	k	(k	+	1)5	k	b)	It	converges	by	the	Ratio	Test,	since	(k	+	1)100	/ek+1	((k	+	1)/k)100	1	=	→	k	100	/ek	e	e	as	k	→	∞.	k=0	P∞	If	k=0	Sk	rk	converges,	then	SN	rN	→	0	as	N	→	∞,	and	we	have
verified	the	first	identity.	c)	Since	p	>	1,	choose	α	>	0	such	that	p	−	α	>	1.	n→∞	n→∞	n→∞	To	obtain	the	reverse	inequality,	notice	by	the	Approximation	Property	that	for	each	n	∈	N	there	is	a	jn	>	n	such	that	inf	k≥n	(xk	+	yk	)	>	xjn	−	1/n	+	yjn	.	The	author	and	publisher	shall	not	be	liable	in	any	event	for	incidental	or	consequential	damages	in
connection	with,	or	arising	out	of,	the	furnishing,	performance,	or	use	of	these	programs.	Thus	ψ(u)	≥	0	for	all	u	∈	(−∞,	1),	i.e.,	φ0	(t)	≥	0	for	all	t	>	x.	By	the	argument	of	Theorem	3.40,	this	definition	is	independent	of	the	sequence	xk	chosen	to	approximate	x.	ù	∂g1	/∂x1	(a)	.	Since	HN	⊇	H1	,	and	HN	⊇	H1	,	it	follows	that	c	∅	=	HN	∩	HN	⊇	H1	,	which
contradicts	the	that	H1	is	nonempty.	Thus	by	part	a),	a	cannot	be	a	cluster	point	of	R.	5.4.7.	a)	Suppose	L	>	0.R	If	f	(x)	→	LRas	x	→	∞,	then	choose	N	∈	N	such	that	f	(x)	>	L/2	for	x	≥	N	.	b)	Suppose	that	x	<	y.	Hence	ey/k	cos(y/k)	→	1	uniformly	on	E	as	k	→	∞.	Thus	D2	F	(x0	)	≥	0.	We	claim	that	L	=	0.	Thus	by	Taylor’s	Formula,	√	x+	√	y	=3+	x	−	1	y	−	4
(x	−	1)2	(y	−	4)2	(x	−	1)3	(y	−	4)3	√	√	+	−	−	+	+	2	4	8	64	16	c5	16	d5	for	some	(c,	d)	∈	L((x,	y);	(1,	4)).	b)	If	E	is	a	bounded	infinite	set,	then	it	contains	distinct	points	x1	,	x2	,	.	Since	f	0	(x)	exists	and	is	nonzero	for	all	x	∈	(0,	∞),	it	follows	from	Theorem	4.33	that	f	−1	is	differentiable	on	(0,	∞)	and	(f	−1	)0	(x)	=	1/f	0	(f	−1	(x)).	It	is	closed	because	its
complement	{(x,	y)	:	2	x	+	4y	2	>	1}	is	open.	Iterating	what	we	just	proved,	using	the	fact	that	the	limit	of	the	product	is	the	product	of	the	limits,	we	see	that	g(x)	→	f1	(a1	)	·	·	·	fn	(an	)	as	x	→	a.	a)	Let	s	=	`(t).	Then	Z	Z	Z	Z	(x	+	y	+	z	3	)	ds	=	(x	+	y	+	z	3	)	ds	+	(x	+	y	+	z	3	)	ds	+	(x	+	y	+	z	3	)	ds	C	C1	C2	C3	√	√	Z	1	Z	2	√	Z	1	1	3	5	5+3	5	=	t	dt	+	5	(2	−
t)	dt	+	t	dt	=	+	+2=	.	The	converse	follows	similarly	integrating	term	by	term.	c)	Since	(−1)n+1	+	(−1)n	/n	=	−1	+	1/n	when	n	is	even	and	1	−	1/n	when	n	is	odd,	lim	supn→∞	xn	=	1	and	lim	inf	n→∞	xn	=	−1.	If	x	=	1	and	z	=	0,	then	3	+	y	=	1	and	−1	+	w	=	0,	i.e.,	y	=	−2,	w	=	1.	Given	²	>	0	choose	δ	>	0	so	small	that	a	<	x	<	a	+	δ	or	65	Copyright	©
2010	Pearson	Education,	Inc.	Thus	Z	2π	Z	π/2	A(S)	=	0	a2	|	cos	v|	dv	du	=	4πa2	.	Now	P	(x)	−	P	(y)	=	(x	−	y)Q(x,	y)	where	Q(x,	y)	=	an	(xn−1	+	·	·	·	+	y	n−1	)	+	·	·	·	+	a2	(x	+	y)	+	a1	.	When	p	=	1,	the	integral	is	log	x	¯0	which	diverges.	If	c	=	max{x−²,	a}	and	d	=	min{x+²,	b}	then	c	<	d	and	(x−²,	x+²)∩[a,	b)	⊇	(c,	d).	The	inequality	holds	if	4k	2	>	4k	2
−	1,	i.e.,	if	1	>	0.	c)	Let	ak	=	(2	·	4	.	5.2.0.	a)	True.	Thus	M	is	not	an	upper	bound	for	one	of	the	sets	A	or	B,	a	contradiction.	ak	a	a	a	d)	The	formula	holds	for	n	=	1.	If	one	of	the	pair	x,	y	belongs	to	[0,	N	]	and	the	other	does	not,	for	example,	if	x	∈	[0,	N	]	and	y	∈	/	[0,	N	],	then	|x	−	N	|	≤	|x	−	y|	<	δ.	C1	On	C2	,	x	=	2	hence	dx	=	0,	and	0	Z	Z	3	y	dx	+	x	dy
=	2	dy	=	4.	Thus	by	the	calculations	in	part	b),	choose	n	=	11.	,	8	but	is	a	perfect	square,	namely	144	=	122	,	when	n	=	9.	Then	mj	(|f	|)	≥	²	and	it	follows	that	Z	b	(L)	|f	(x)|	dx	≥	L(|f	|,	P	)	≥	mj	(|f	|)(xj	−	xj−1	)	≥	²(2δ)	>	0.	And,	if	1	<	p	≤	2,	then	the	maximum	is	1	and	the	minimum	is	n(p−2)/p	.	Thus	φ(t)	is	increasing	for	t	>	x,	so	eφ(k)	=	(1	−	x/k)k	↑
e−x	as	k	→	∞	for	all	x	∈	R.	j=1	Thus	f	(H)	⊂	SN	j=1	Vαj	,	i.e.,	f	(H)	is	compact.	By	induction,	there	are	infinitely	many	points	in	E	∩	Br	(a).	Thus	k	log	k	≥	k	p	for	k	≥	3,	and	it	follows	from	∞	the	Comparison	Test	that	k=1	k	−	log	k	converges.	ε)	By	definition,	ì	x≤0	ï	í	3x	+	2	f	(x)	=	x+2	0	2.	If	k	=	0	then	nq	=	1	is	a	root	of	the	polynomial	x	−	1.	,	N	},	ψ
and	τ	are	C	1	and	τ	0	>	0.	other	hand,	if	fxy	(a,	b)	=	0	then	either	fxx	(a,	b)	6=	0	or	fyy	(a,	b)	6=	0.	By	definition,	dT	=	2π	1	2	r	g	L	µ	g	dL	−	L	dg	g2	¶	=	T	2	µ	dL	dg	−	L	g	¶	.	But	0	is	analytic	on	(−∞,	∞),	so	by	Theorem	7.56,	f	=	0	on	R.	No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted,	in	any	form	or	by	any
means,	electronic,	mechanical,	photocopying,	recording,	or	otherwise,	without	the	prior	written	permission	of	the	publisher.	If	C(x,	y)	ends	in	a	vertical	line	segment,	then	by	part	a),	fy	=	Q.	Thus	xn+1	=	2xn	yn	<	xn	.	Since	|(1/α)Rj	|	=	(1/α)n	|Rj	|,	it	follows	that	X	X	Vol	(αE)	=	inf	|αRj	|	=	αn	sup	|Rj	|	=	αn	Vol	(E).	Hence	x	∈	∂E.	Hence	|	k=1	(1	−
cos(1/k))|	≤	0	|f	(x)|	dx	≤	2.	The	graph	of	f1	has	no	tangent	at	x	=	0	because	it	oscillates	between	y	=	x	and	y	=	−x.	In	particular,	{Uα	}α∈A0	is	a	finite	subcovering	of	E	which	covers	H.	Thus	the	original	series	diverges	by	the	Divergence	Test.	is	closed	as	Exercise	9.4.4	says	it	should;	f	−1	(−1,	1)	=	R	\	{x	:	x	=	(2k	+	1)π/2,	k	∈	Z}	is	open	as	Theorem
9.26	says	it	should;	f	−1	[−1,	1]	=	R	is	closed	as	Exercise	9.4.4	says	it	should.	24m	24m	Similarly,	s(f	;	Gm	)	=	(24m	−	23m+1	+	22m	)/24m	Consequently,	S(f	;	Gm	)	−	s(f	;	Gm	)	=	23m+2	/24m	=	4/2m	→	0	as	m	→	∞.	By	the	Extreme	Value	Theorem,	there	is	a	t0	∈	[a,	c]	such	that	f	(t0	)	=	F	(c).	Finally,	since	each	fxj	is	increasing	and	nonconstant,	there
is	a	t	∈	E	such	that	fx0	j	(t)	>	0	PN	Thus	f	0	(t)	=	k=1	fx0	k	(t)	≥	fx0	j	(t)	>	0.	In	the	same	way,	we	can	prove	that	a0	(f	(x	+	h)	−	f	(x	−	h))	=	0	and	bk	(f	(x	+	h)	−	f	(x	−	h))	=	−2ak	(f	)	sin	kh	for	k	∈	N.	Now	n2	+	3n	is	a	perfect	square	when	n	=	1	but	if	n	>	1	then	(n	+	1)2	=	n2	+	2n	+	1	<	n2	+	2n	+	n	=	n22	+	3n	=<	n2	+	4n	+	4	=	(n	+	2)2	.	When	p	=
1,	the	integral	is	log	x	¯1	which	diverges.	Since	k	>	sup	E,	k	cannot	belong	to	E,	i.e.,	a	<	k.	Since	f	(h,	k)	−	f	(0,	0)	−	∇f	(0,	0)	·	(h,	k)	h4	+	k	4	=	2	≤	2(h2	+	k	2	)3/2−α	→	0	k(h,	k)k	(h	+	k	2	)α+1/2	as	(h,	k)	→	(0,	0),	f	is	also	differentiable	at	(0,	0).	In	particular,	f	(K)	⊂	{f	(x1	),	.	If	x	∈	K,	then	x	∈	Ixj	for	some	j,	so	f	(x)	≥	0	+	·	·	·	+	fxj	(x)	+	·	·	·	+	0	>	0.
Therefore	V	=	∪x∈V	B²	(x)	as	required.	4.1.4.	Since	|f	(x)|	≤	|x|α	for	all	x	∈	I,	f	(0)	=	0.	Thus	this	function	has	no	limit	as	(x,	y)	→	(0,	0).	Since	E	⊆	f	(X),	choose	a	∈	X	such	that	x	=	f	(a).	d)	Since	xn	→	1/2	as	n	→	∞,	lim	supn→∞	xn	=	lim	inf	n→∞	xn	=	1/2	by	Theorem	2.36.	Let	²	>	0	and	choose	M	xn	→	∞	as	n	→	∞,	choose	N	∈	N	such	that	n	≥	N	implies	xn	f
(xn	)	→	L	as	n	→	∞.	130	Copyright	©	2010	Pearson	Education,	Inc.	∂xn	∂x1	∂xn−1	Fx1	Fx2	Fxn	11.6.8.	By	Theorem	C.5,	·	∂f1	/∂x	Df	=	∂f2	/∂x	∂f1	/∂y	∂f2	/∂y	¸	implies	(Df	)−1	=	1	∆f	·	∂f2	/∂y	−∂f2	/∂x	¸	−∂f1	/∂y	.	Hence	by	Theorem	4.17i,	f	increases	on	[4,	∞).	Since	f	is	a	uniform	limit	of	continuous	functions,	f	is	continuous	on	[a,	b].	Since	A	is	nonempty,	it
follows	from	the	Completeness	Axiom	that	A	has	a	supremum.	Let	k	≥	N	and	x	∈	R.	Therefore,	c	f	(x)	dx	≥	²0	(d	−	c)	>	0,	a	contradiction.	1.5.4.	Suppose	x	belongs	to	the	left	side	of	(16),	i.e.,	x	∈	X	and	x	∈	/	∩α∈A	Eα	.	j≥n	k≥n	k≥n	Taking	the	limit	of	this	inequality	as	n	→	∞	establishes	a).	Hence	DR	f	(x0	)	=	limh→0+	(f	(x0	+	h)	−	f	(x0	))/h	≤	0.	9.4.10.
Since	¯	¯	µ	¶k	¯	ak+1	¯	2p	¯	¯	≡	2p	k	+	1	→	¯	ak	¯	k	e	P∞	p	as	k	→	∞,	by	L’Hˆopital’s	Rule,	k=1	2kp	k!/k	k	converges	absolutely	when	√	2	<	e,	i.e.,	when	p	<	log2	(e),	and	diverges	when	p	>	log2	(e).	Finally,	if	x	<	y	and	0	<	b	<	1,	then	−x	>	−y	and	by	b),	bx	=	(1/b)−x	>	(1/b)−y	=	by	.	14.5.3.	If	SN	→	f	and	TN	→	f	as	N	→	∞,	then	S	−	T	is	a	trigonometric
series	which	converges	to	zero.	All	rights	reserved.	h→0	h→0	h	Thus	f	0	(0)	=	0	exists.	Then	f	takes	[−1,	1]	onto	[−1,	1]	and	f	(0)	=	1,	but	f	−1	(f	(0))	=	f	−1	(1)	=	{0,	1}.	Therefore,	this	series	converges	if	and	only	if	p	>	1.	b)	By	the	Squeeze	Theorem,	x	cos(1/x2	)	→	0	as	x	→	0.	2x	x	30	Copyright	©	2010	Pearson	Education,	Inc.	x+1	c)	Let	E	=	B2	(0,	0)	\
B1	(0,	0).	By	assumption	vi),	0	≤	cos	x	≤	sin	x/x	≤	1.	46	Copyright	©	2010	Pearson	Education,	Inc.	Let	c	:=	min{r0	,	s0	}	and	d	:=	max{2r,	2s}.	If	E	contains	two	points,	say	a,	b,	then	a,	b	∈	Eα	for	every	α	∈	A.	8.2.4.	a)	The	columns	of	B	are	T	(e1	)	=	(0,	1,	1,	1),	T	(e2	)	=	(0,	1,	0,	1),	T	(e3	)	=	(0,	0,	−1,	0),	and	T	(e4	)	=	(0,	0,	0,	1).	1	5.3.3.	a)	If	x	=	tan	θ
then	dx	=	sec2	θ	dθ	so	Z	1	Z	π/4	x3	f	(x2	+	1)	dx	=	0	tan3	θ	sec2	θf	(sec2	θ)	dθ.	c)	Since	cos2	x	−	sin2	x	=	cos(2x),	it	follows	from	Example	7.44	that	cos2	x	−	sin2	x	=	∞	X	(−1)k	(2x)2k	k=0	(2k)!	=	∞	X	(−4)k	x2k	(2k)!	k=0	for	x	∈	R.	,	0),	then	by	definition,	x·y	(b	−	a)2	cos	θ	=	=√	.	By	looking	at	the	graph,	we	see	that	f	(E)	=	[19,	∞).	Let	P	=	{t0	,	.	To
prove	the	left-most	inequality,	repeat	the	steps	above,	using	part	a)	in	place	of	Remark	6.22i,	but	with	infimum	in	place	of	supremum	and	r1	<	r	in	place	of	r0	>	r,	proves	part	c).	Therefore,	the	solution	is	√	(1/3,	(	3	−	1)/2)	∪	(1,	∞).	If	x,	a	∈	(0,	1)	and	|x	−	a|	<	δ,	then	|f	(x)	−	f	(a)|	≤	|x(sin	2x	−	sin	2a)|	+	|(x	−	a)	sin	2a|	≤	2|	sin(x	−	a)|	+	|x	−	a|	≤	3|x	−
a|	<	3	ε	=	ε.	b)	The	ratio	of	consecutive	terms	of	this	series	is	(2k	+	1)/(2k	+	4)	which	converges	to	1	as	k	→	∞.	A	similar	argument	works	for	the	case	t	<	t0	.	Since	X	is	complete	and	satisfies	the	Bolzano–Weierstrass	Property	10.4.7.	a)	Since	both	sets	are	nonempty	and	ρ(x,	y)	is	bounded	below	by	0,	the	dist	(A,	B)	exists	and	is	finite.	j=1	Since	each
Braj	(aj	)	contains	xk	for	only	finitely	many	k’s	and	xk	∈	H	for	all	k	∈	N,	it	follows	that	N	is	finite,	a	contradiction.	Pk	14.2.1.	Let	²	>	0	and	set	Sk	(x)	:=	j=0	fj	(x)	for	k	≥	0	and	x	∈	E.	10.1.9.	a)	Repeat	the	argument	of	Remark	10.9	with	ε/2	in	place	of	ε.	Since	F	=	∇f	,	f	must	be	C	2	on	E,	hence	Qx	=	fyx	=	fxy	=	Py	on	E.	Thus	1/yn	→	0	as	n	→	∞	and	xn	≥	1
for	all	n	∈	N.	Thus	5	<	2x	+	3	<	7	and	0	<	x	−	1	<	δ.	Choose	N	∈	N	such	that	|ak	|	≤	1/2	for	k	≥	N	.	If	λ√=	0	then	x	=	2y	and	the	constraint	implies	y	=	±1/	5.	Thus	T	(1,	0,	0)	=	T	(0,	−1,	1)	+	T	(1,	1,	−1)	=	(1,	0)	+	(1,	2)	=	(2,	2).	¯	¯	0	¯	4	2a	4ae	2a	2a	e	2	a	It	remains	to	prove	the	claim.	1	b)	By	the	Chain	Rule	d	F	(x)	=	dx	ÃZ	0	Z	x3	f	(t)	dt	−	0	!	x2	f	(t)
dt	=	3x2	f	(x3	)	−	2xf	(x2	).	PN0	7.1.10.	,	BN	,	where	u(x,	t)	≥	−²	on	U	:=	∪N	j=1	Bj	.	Since	−1/x	→	−∞	as	x	→	0+	implies	that	e−1/x	→	e−∞	=	0	=:	f	(0),	it	follows	that	from	Remark	3.20	that	f	is	continuous	on	[0,	1].	¯1	R1	b)	If	p	6=	1	then	0	dx/xp	=	x1−p	/(1	−	p)	¯0	.	a)	Suppose	that	H	is	compact	and	xk	∈	H.	82	Copyright	©	2010	Pearson	Education,
Inc.	b)	f	−1	(−1,	1)	=	[0,	1)	is	relatively	open	in	[0,	∞),	the	domain	of	f	as	Theorem	9.26	says	it	should;	f	−1	[−1,	1]	=	[0,	1]	is	relatively	closed	in	[0,	∞)	as	Exercise	9.4.5a	says	it	should.	11.3.3.	By	Theorem	11.22,	the	normal	direction	is	given	by	(−2x,	−2y,	1).	We	will	choose	two	planes	with	normal	(0,	0,	1),	e.g.,	z	=	0	and	z	=	1.	,	fm	(x))	−	(b1	,	.	If	θ	is
the	angle	between	this	longest	side	and	the	“first”	side	of	Q,	y	:=	(a	−	b,	0,	.	On	the	other	hand,	if	y	∈	/	E,	then	fx0	j	(y)	=	0	for	all	j.	By	Remark	1.41,	the	unit	interval	(0,	1)	is	uncountable,	hence	{x	:	x	∈	(0,	1)}	is	an	uncountable	collection	of	pairwise	disjoint	nonempty	sets	which	covers	the	unit	interval	(0,	1).	,	fxxxx	=	y	4	exy	,	fxxxy	=	(3y	2	+xy	3	)exy
,	fxxyy	=	(2+4xy	+x2	y	2	)exy	,	fxyyy	=	(3x2	+x3	y)exy	,	and	fyyyy	=	x4	exy	.	If	f	(x0	)	6=	0	for	some	x0	∈	[a,	b],	then	by	part	a),	a	|f	(x)|	dx	>	0,	a	contradiction.	Thus	|f	(x)	−	f	(y)|	≤	|f	(x)	−	f	(N	)|	+	|f	(N	)	−	L|	+	|f	(y)	−	L|	0	choose	δ	>	0	such	that	x,	y	∈	E	and	|x−y|	<	δ	imply	|f	(x)−f	(y)|	and	|g(x)−g(y)|	<	²/2.	u	d)	Using	the	substitution	u	=	t/x,	we	obtain
Z	x	Z	xy	Z	y	dt	dt	du	L(xy)	=	+	=	L(x)	+	=	L(x)	+	L(y).	9.5.3.	Since	E	is	compact,	it	is	bounded	by	the	Heine-Borel	Theorem.	Let	y	∈	E.	Let	Qj	be	cubes	such	that	x	∈	Qoj	and	Vol	(Qj	)	→	0	as	j	→	∞.	c)	By	the	Archimedean	Principle,	given	ε	>	0	there	is	an	N	∈	N	such	that	N	>	3/ε.	In	particular,	the	smooth	parametrizations	(φxj	,	Exj	)	satisfy	S	=	∪N	j=1
φxj	(Exj	).	c)	The	graph	of	f	is	a	parabola	whose	absolute	maximum	is	1	at	x	=	1.	If	we	set	H	:=	{(0,	y)	:	−1	≤	y	≤	1}	then	E	∪	H	is	closed	and	bounded,	hence	compact.	k=1	(kq	)	Pn	6.2.9.	If	sn	:=	k=1	ak	converges	then	so	does	s2n+1	.	p	(2k)!	(2k)!	(2k)!	k=0	k=0	k=p+1	Then	(*)	(−1)p+1	(2p)!q/p	−	(−1)p+1	(2p)!	p	X	(−1)k	/(2k)!	=	k=0	∞	X	(−1)k+p+1
(2p)!/(2k)!.	Conversely,	if	E	∩	Bs	(a)	\	{a}	is	always	nonempty	for	all	s	>	0	and	r	>	0	is	given,	choose	x1	∈	E	∩	Br	(a).	Thus	f	is	strictly	increasing,	hence	1–1,	and	ì	ï	í	(x	−	2)/3	f	−1	(x)	=	x−2	ï	î	(x	+	2)/3	x≤2	2	4,	6	Copyright	©	2010	Pearson	Education,	Inc.	1.6.1.	The	function	2x	−	1	is	1–1	and	takes	N	onto	{1,	3,	5,	.	Thus	P2n	(x)	=	n	X	(−1)k	x2k	k=0
(2k)!	.	Conversely,	if	|xn	|	<	C	for	all	n	∈	N,	then	xn	is	bounded	above	by	C	and	below	by	−C.	d)	Set	F	(x,	y,	z)	=	x	+	y	+	z	+	g(x,	y).	0	13.3	Surfaces.	We	have	shown	that	[α,	β]	⊆	J.	P∞akj	<	∞.	Since	|	sin	θ|	≤	1	no	matter	what	θ	is,	we	have	2	|f	(x)	−	L|	=	|x3	sin(ex	)|	<	δ	3	·	1	=	ε	for	every	x	which	satisfies	0	<	|x|	<	δ.	8.3.9.	Suppose	E	is	closed	and	a	∈	/
E,	but	inf	x∈E	kx	−	ak	=	0.	Hence	by	Stokes’s	Theorem	and	Theorem	7.10,	ZZ	Z	lim	curl	Fk	·	n	dσ	=	lim	Fk	·	T	ds	k→∞	k→∞	∂S	S	Z	ZZ	=	F	·	T	ds	=	curl	F	·	n	dσ.	∈	R	such	that	x	>	M	implies	|f	(x)	−	L|	<	².	On	the	other	hand	k=0	2k	=	2n	−	1	by	induction.	dx	d)	Let	u	=	x	−	t	so	du	=	dx.	Hence	E	=	A	∩	Y	,	where	A	=	Y	\	U	is	closed	in	Y	.	We	may	suppose
that	B	=	+∞.	But	s	<	r,	so	Bs	(a)	⊂	Br	(a).	xn	=	1/2	−	1/n	is	strictly	increasing	and	|xn	|	≤	1/2	<	1	+	1/n,	but	xn	→	1/2	as	n	→	∞.	x	∈	Ac	.	Thus	|ak	|	≤	1/k	for	large	k.	1.3.9.	By	induction,	2n	>	n.	Thus	by	the	Ratio	Test,	this	series	converges	when	1	(i.e.,	when	−3	<	x	<	−1)	and	diverges	when	P∞	|x	+	2|	<	√	|x	+	2|	>	1.	y	does	not	depend	on	the	sequence
xn	.	Hence	by	the	Heine	Borel	Theorem,	it	is	not	compact.	b)	By	a),	lim	inf	(xn	yn	)	=	−	lim	sup(−xn	yn	)	≥	−	lim	sup(−xn	)	lim	sup	yn	=	lim	inf	xn	lim	sup	yn	.	Hence	|αxn	−	αxm	|	≤	|α|	|xn	−	xm	|	<	ε	for	n,	m	≥	N	.	b)	Choose	a	<	b0	<	b	such	that	f	(x)/g(x)	>	M	:=	min{L/2,	1}	for	all	b0	<	x	<	b.	10.6.6.	a)	Since	f	is	continuous,	so	is	kf	k	(modify	the	proof
of	Exercise	3.1.6).	a)	Since	F	(a,	b)	=	n	X	∞	X	|xj	|	<	∞.	d)	Let	x,	y	∈	R.	3	13.2.4.	a)	Since	τ	0	(u)	=	δ	>	0,	(ψ,	J)	and	(φ,	I)	are	orientation	equivalent	by	Definition	13.18.	Hence	x0	∈	(c,	d).	Thus	ZZ	Z	1Z	1	14	ω=	(x,	y,	x4	+	y	2	)	·	(4x3	,	−2y,	1)	dx	dy	=	−	.	Then	0	=	f	0	(x)	=	xα−1	(α	−	x)/ex	implies	x	=	α.	Moreover,	since	B	=	∞,	we	know	that	f	0	(x)	cannot
be	zero	for	large	x.	6.5.1.	a)	Let	f	(x)	=	π/2	−	arctan	x.	c)	Let	x−1	k	=	(2k	+1)π/2	for	k	∈	N	and	notice	that	{xn	,	xn−1	,	.	Since	f	is	increasing,	L	−	²	<	f	(x0	)	≤	f	(x)	≤	L	for	all	x0	<	x	<	b.	If	x	>	0	and	y	>	0,	then	by	the	Additive	Property,	x	+	y	>	0	and	by	the	First	Multiplicative	Property,	xy	>	0.	Since	f	is	1–1	from	A	onto	B0	,	it	follows	from	Theorem
1.30	that	x	=	f	(f	−1	(x))	=	f	(f	−1	(y))	=	y.	If	n	=	1	then	f	0	(x0	)	=	1	for	all	x0	∈	R.	When	x	=	−1	it	diverges	by	the	Limit	Comparison	Test	(compare	it	with	1/k).	Since	g	is	differentiable	at	a,	I1	/khk	→	0	as	h	→	0.	Since	²	>	0	was	arbitrary,	it	follows	that	lim	supn→∞	|Bn	−	b|	=	0.	Chapter	9	9.1	Limits	of	Sequences.	Hence	f	is	integrable	on	[0,	1]	and	38
Copyright	©	2010	Pearson	Education,	Inc.	k=0	b)	Let	²	>	0	and	choose	N	∈	N	such	that	k	≥	N	implies	|σk	−	L|	<	².	Moreover,	if	g(t)	=	t/(t2	+	x),	t	≥	1,	then	g	0	(t)	=	(x	−	t2	)/(t2	+	x)2	<	0	for	all	t	>	x.	This	formula	holds	for	`	=	1.	R1	c)	No.	If	f	(x)	=	x,	then	−1	f	(x)	dx	=	0	but	f	(x)	6=	0	for	all	x	6=	0.	By	hypothesis,	h(a)	>	0	and	h(b)	<	0.	Set	f	(t)	=	(log
t	+	x)/(t	+	x)	and	g(t)	=	1	+	x/t	−	log	t	−	x,	for	t	>	1.	d)	0	=	fx	=	2ax	+	by	and	0	=	fy	=	bx	+	2cy	imply	(b2	−	4ac)y	=	0,	i.e.,	x	=	y	=	0.	Let	φk	be	defined	to	be	zero	off	the	interval	Ik	:=	[2−k	,	2−k+1	)	and	be	defined	on	Ik	so	its	graph	forms	a	triangle	R1	with	base	Ik	and	height	2k+1	.	We	conclude	that	f	is	differentiable	on	R2	.	2.3.0.	a)	False.	95
Copyright	©	2010	Pearson	Education,	Inc.	Since	f	is	convex,	f	(x)	≤	y	∗	.	2	b)	By	Definition	1.1,	if	a	≥	0	then	a+	=	(a	+	a)/2	=	a	and	if	a	<	0	then	a+	=	(−a	+	a)/2	=	0.	Pn	i.e.,	λ	=	(2/p)	j=1	x2j	.	Hence	given	n	≥	N	,	∞	X	0	≤	s	−	sn	=	|ak	|	≤	|aN	|	k=n+1	∞	X	xk−N	=	|aN	|	k=n+1	xn−N	+1	.	Then	by	Exercise	1.2.5c,	0	<	xn+1	<	xn	.	Thus	we	need	only
check	whether	f[0,∞)	(0)	=	0.	3.3.5.	Since	M	−	f	(x)	>	0,	it	follows	from	the	Sign	Preserving	Property	that	there	is	an	interval	I	centered	at	x0	such	that	M	−	f	(x)	>	0,	i.e.,	f	(x)	<	M	for	all	x	∈	I.	Then	(1,	0)	is	a	boundary	point	of	E	which	does	not	belong	to	E.	∂gm	/∂x1	(a)	.	0	b)	If	(φ,	E)	is	the	parameterization	given	in	Example	13.31,	then	kφu	×	φv	k	=
k(a2	cos	u	cos2	v,	a2	sin	u	cos2	v,	a2	sin	v	cos	v)k	=	a2	|	cos	v|.	Since	sin(1/tk	)	=	(−1)k	,	it	is	clear	that	kφ(tk	)	−	φ(tk+1	)k	≥	2	for	each	k	∈	N.	Then	√	√	√	√	F	·	ψ	0	=	(sin	t/	3,	−	sin	t/	3,	0)	·	(−	sin	t,	sin	t,	cos	t/	3)	=	−2	sin2	t/	3.	If	k	>	N	,	then	k(1/k,	1	−	1/k	2	)	−	(0,	1)k2	=	1/k	2	+	1/k	4	≤	1/k	2	+	1/k	2	<	ε2	.	If	x,	y	∈	E	and	|x	−	y|	<	δ,	then	|f	(x)	−	f	(y)|
≤	|f	(x)	−	fN	(x)|	+	|fN	(x)	−	fN	(y)|	+	|fN	(y)	−	f	(y)|	<	².	Thus	the	integral	converges	if	and	only	if	p	>	1.	Thus	nq	is	algebraic.	b)	By	part	a)	and	the	Dot	Product	Rule,	0	=	(ν	0	(s)	·	ν	0	(s))0	=	2ν	0	(s)	·	ν	00	(s).	0	≤	(cb	−	ad)2	=	c2	b2	−	2abcd	+	a2	d2	implies	2abcd	≤	c2	b2	+	a2	d2	.	Therefore,	8.2.11.	2	0	5.2.2.	a)	By	the	First	Mean	Value	Theorem	for
Integrals,	there	is	a	c	∈	[a,	b]	such	that	Z	0=	b	Z	b	f	(x)xn	dx	=	f	(c)	a	xn	dx	=:	f	(c)	·	I.	14.1.2.	By	definition	and	a	sum	angle	formula,	1	2π	(SN	f	)(x)	=	Z	π	f	(t)	dt	−π	Z	N	µ	X	cos	kx	+	π	sin	kx	f	(t)	cos	kt	dt	+	π	−π	Z	π	¶	f	(t)	sin	kt	dt	π	−π	Ã	!	Z	N	1	π	1	X	=	f	(t)	+	(cos	kx	cos	kt	+	sin	kx	sin	kt)	dt	π	−π	2	k=0	Z	1	π	=	f	(t)DN	(x	−	t)	dt.	9.2	Heine-Borel
Theorem.	The	actual	value	is	∆w	=	f	(1.01,	1.98,	1.03)	−	f	(1,	2,	1)	≈	3.049798	−	3	=	0.049798.	¯	k	k	¯	¯	bn	bm	¯	bm	bm	bm	k≥m	k≥m	k≥N	k=m	We	conclude	that	|bm	P∞	ak	|	<	²	for	m	≥	N	,	i.e.,	bm	P∞	ak	→	0	as	m	→	∞.	r2	∂θ2	r	∂r	∂r	11.4.7.	a)	By	the	Product	Rule,	uxx	(x,	t)	=	∂	∂x	µ	¶	µ	2	¶	−2x	x	1	u(x,	t)	=	−	u(x,	t)	=	ut	(x,	t).	Therefore,	x	∈	Eαc	for
some	α	∈	A,	i.e.,	x	belongs	to	the	right	side	of	(16).	b)	Using	the	substitution	u	=	x3	,	dx	=	3x2	dx,	we	have	Z	0	2	x3	x	e	−∞	1	dx/(1	+	x	)	=	3	2	Z	0	eu	du	=	−∞	1	.	c)	Set	F	(x,	y,	z)	=	xyz(2	cos	y	−	cos	z)	+	z	cos	x	−	x	cos	y.	1.5.0.	a)	False.	1.6.4.	By	definition,	there	is	an	n	∈	N	and	a	1–1	function	φ	which	takes	Z	:=	{1,	2,	.	Hence	by	Dirichlet’s	Test,	a	(b	−
b)	converges,	say	to	s.	3.3	Continuity.	Conversely,	if	f	g	is	continuous	at	a	and	f	is	continuous	and	nonzero	at	a,	then	g	=	f	g/f	is	continuous	at	a	by	Theorem	3.22.	But	the	angle	between	ν	0	and	ν	00	is	π/2	and	sin(π/2)	=	1.	,	xN	.	On	the	other	hand,	by	homogeneity,	k(αf	)(a	+	h)	−	(αf	)(a)	−	(αT	)(h)k	kf	(a	+	h)	−	f	(a)	−	T	(h)k	=	|α|	khk	khk	Since	this	last
term	converge	to	α	·	0	=	0	as	khk	→	0,	it	follows	that	αf	is	differentiable,	and	D(αf	)(a)	=	αT	.	If	y	=	e1/x	then	log	y	=	1/x,	i.e.,	x	=	1/	log	y.	The	estimates	in	part	b)	can	be	made	uniform	if	σk	converges	uniformly.	Consequently,	f	−1	(f	({a}))	⊇	{a,	b}	⊃	{a},	which	contradicts	c).	If	k=1	|Ik	|	<	1	then	some	point	of	[0,	1]	is	PN	uncovered.	Therefore,	f	(E)
=	[1,	5].	Suppose	f	is	integrable	on	[a,	b].	7.4	Analytic	Functions.	Now	yn	<	xn	implies	2yn	<	xn	+	yn	.	,	a)	=	(b	−	a,	.	Hence	the	integral	represents	the	area	of	that	semicircle,	i.e.,	Z	p	1	a2	−	x2	dx	=	πa2	.	By	the	Approximation	Property	for	Infima,	choose	xk	∈	A	and	yk	∈	B	such	that	kxk	−	yk	k	→	dist	(A,	B).	Thus	by	part	a),	(f	−1	)0	(e)	=	1/f	0	(1)	=
1/(4e).	113	Copyright	©	2010	Pearson	Education,	Inc.	Therefore,	¯Z	¯	¯	1	2	n−1	X	Z	1	x2k	¯¯	3	¯	x	e	−	¯	¯≤	.	k∈Z	1.5.3.	a)	The	minimum	of	x−2	on	[0,	1]	is	−2	and	the	maximum	of	x+1	on	[0,	1]	is	2.	We	conclude	that	f	(1,	−2,	0,	1)	=	2	is	the	minimum	and	f	(1,	2,	−1,	−2)	=	3	is	the	maximum.	Suppose	n	≥	N	and	x	∈	[0,	1].	By	elementary	integration,	it	is
easy	to	see	that	if	fn	(x)	=	xn	,	then	kfn	k1	=	1/(n+1)	→	0	as	n	→	∞.	Then	0	<	k(x,	y)	−	(a,	b)k	<	δ	implies	|x	−	a|	<	δ,	so	g(x,	y)	−	f	(a)|	=	|f	(x)	−	L|	<	ε.	Vol	(Br	(x0	))	Br	(x0	)	12.2.4.	a)	Since	U	(f,	G)	−	L(f,	G)	≤	U	(f	−	fN	,	G)	−	L(f	−	fN	,	G)	+	U	(fN	,	G)	−	L(fN	,	G)	=:	I1	+	I2	and	fN	is	integrable,	we	can	show	that	f	is	integrable	if	we	show	I1	is	small.
Then	both	terms	on	the	right	side	of	part	a)	which	end	in	−γ	converge	to	zero	as	n	→	∞.	2	x(x2	+	z	2	)	dz	dx	=	0	1	3	Z	1	(x	−	x7	)	dx	=	0	122	Copyright	©	2010	Pearson	Education,	Inc.	b)	Let	E	=	[0,	1].	n	xn	¯	|xn	|	2.1.3.	a)	If	nk	=	2k,	then	3	−	(−1)nk	≡	2	converges	to	2;	if	nk	=	2k	+	1,	then	3	−	(−1)nk	≡	4	converges	to	4.	Since	a	∈	K,	we	conclude	that	f
(x)	=	f	(a)	for	all	x	∈	K.	By	part	a),	f	(a+)	and	f	(b−)	exist.	,	1).	b)	Define	f	on	R	by	f	(x)	=	x	for	x	6=	0	and	f	(0)	=	1.	,	yn	+	xn	)	=	y	+	x	and	x	·	y	=	x1	·	y1	+	·	·	·	+	xn	·	yn	=	y1	·	x1	+	·	·	·	+	yn	·	xn	=	y	·	x.	C2	E	b)	Since	Qx	=	(y	2	−	x2	)/(x2	+	y	2	)2	=	Py	,	we	can	replace	∂E	with	any	simple	closed	curve	which	surrounds	(0,	0)	and	is	disjoint	from	∂E.	13.1.10.
If	it’s	true	for	some	n	≥	1,	then	by	the	Inductive	Hypothesis,	definition,	and	the	Sum	Rule,	(f	+	g)(n+1)	=	(f	(n)	+	g	(n)	)0	=	f	(n+1)	+	g	(n+1)	.	Then	f	(x)	→	0	as	x	→	0,	but	g(x,	y)	=	f	(x)(y	+	1)	does	not	have	a	limit	as	(x,	y)	→	(0,	0).	Thus	F	=	(P,	Q)	=	(fx	,	fy	)	is	conservative	by	definition.	0	¯e	By	hypothesis,	either	f	(0)	=	0	or	g(0)	=	0,	and	either	f	(e)	=	0
or	g(e)	=	0.	b)	By	the	Quotient	Rule,	µ	¶0	f	f	0	(3)g(3)	−	f	(3)g	0	(3)	2b	−	d	(3)	=	=	.	Then	by	Exercise	1.2.5a,	2	<	xn+1	<	xn	.	If	x	<	M	,	then	x	+	1	<	−1/ε	<	0	so	|x	+	1|	=	−(x	+	1)	>	1/ε.	Choose	a	partition	{x0	,	x1	,	.	If	p	≤	0,	this	series	diverges	by	the	Divergence	Test.	Then	xn	,	yn	→	∞	so	choose	N	so	large	that	Q(xN	,	yN	)	>	2/δ.	3.2.2.	a)	x3	−x2	−4	=
(x−2)(x2	+x+2)	and	x2	−4	=	(x+2)(x−2)	so	(x3	−x2	−4)/(x2	−4)	=	(x2	+x+2)/(x+2)	→	8/4	=	2	as	x	→	2−.	R∞	∞	c)	0	eat	e−st	dt	=	0	e−t(s−a)	dt	=	1/(s	−	a)	for	s	>	a.	In	particular,	|x0	−	t0	|	≤	c	−	x0	<	δ.	Since	[	Bα	=	E	∩	α∈A	[	Vα	,	α∈A	and	the	union	of	Vα	’s	is	open	by	Theorem	8.24,	it	is	clear	that	the	union	of	the	Bα	’s	is	relatively	open	in	E.	But	by
Lindel¨of	(or	using	rational	centers	and	rational	radii	as	in	the	proof	of	the	Borel	Covering	Lemma),	we	can	find	open	balls	Bj	:=	B²j	(xj	)	∞	∞	such	that	V	⊆	∪∞	j=1	Bj	.	Hence	it	surely	converges.	Moreover,	by	L’Hˆopital’s	Rule,	log(1/f	(k))	f	0	(k)/f	(k)	=	−	lim	≡	−α.	b)	Since	x2	−	2x	+	√	3	>	x2	2	2	implies	x	<	3/2,	inf	E	=	0,	sup	E	=	3/2.	By	Theorem
10.16,	E	must	be	closed.	Either	there	is	an	a	∈	H	such	that	for	each	r	>	0,	Br	(a)	contains	xk	for	infinitely	many	k’s,	or	for	each	a	∈	H	there	exists	an	ra	>	0	such	that	Bra	(a)	contains	xk	for	only	finitely	many	k’s.	If	f	is	continuous	at	x	=	1	then	|f	(x0	)	−	f	(yn	)|	=	|f	(x0	/yn	)|	→	|f	(1)|	=	0	as	n	→	∞,	i.e.,	f	is	continuous	at	x0	.	x0	<	1.	n→∞	n→∞	b)	It	suffices
to	prove	the	first	identity.	3	3	2	3	3	2	1	+	t	(1	+	t	)	1	+	t	(1	+	t	)	(1	+	t3	)2	148	Copyright	©	2010	Pearson	Education,	Inc.	10.3.5.	Suppose	E	is	closed	and	a	∈	/	E.	Since	DE	>	0	and	c	6=	0,	it	follows	from	Theorem	11.61	that	the	point	(x,	y,	z)	identified	above	is	a	maximum	when	Fxx	/2	=	cD	<	0	and	a	minimum	when	cD	>	0.	It	follows	that	G(f	)	is	of
volume	zero.	Let	ψ(x)	:=	f	(φ(x))	for	x	∈	Z.	Similarly,	y	∈	Bs	(b).	d)	Let	s	=	E(x),	t	=	E(y),	and	w	=	E(x	+	y).	This	last	series	converges	since	α	>	1/2.	2a	√	We	claim	that	e	≤	2/(ae).	a	Thus	7.50	(with	x0	=	0),	Rnf,0	(a)	→	0	as	n	→	∞,	for	all	a	∈	R.	2	c)	−1/x2	→	0	as	x	→	−∞	so	e−1/x	→	e0	=	1.	It	can	be	parameterized	by	φ(t)	=	(cos	t/	2,	cos	t/	2,	sin	t),	t	∈	[0,
2π].	By	part	a),	V	=	ka	×	bk	·	h,	where	h	=	kck	·	|	cos	θ|.	By	the	first	derivative	test,	φ(1)	=	1/e	is	a	local	maximum.	9.5.4.	Suppose	A	is	uncountable.	Since	{xn	}	is	increasing,	n	≥	N	implies	xn	≥	xN	>	M	.	2.5.1.	a)	Since	3	−	(−1)n	=	2	when	n	is	even	and	4	when	n	is	odd,	lim	supn→∞	xn	=	4	and	lim	inf	n→∞	xn	=	2.	Since	n/π	→	∞	as	n	→	∞,	we	conclude
that	φ	is	not	of	bounded	variation	on	[0,	1].	b)	If	xn	→	a	in	the	discrete	space,	then	for	n	large,	σ(xn	,	a)	<	1.	18	12.3.5.	a)	If	f	is	continuous	on	R	then	f	is	integrable	on	R	by	Theorem	12.21,	f	(·,	y)	is	integrable	on	[a,	b]	by	Theorem	5.10,	and	f	(x,	·)	is	integrable	on	[c,	d]	(also	by	Theorem	5.10).	Taking	the	limit	of	(*),	as	kj	→	∞,	we	see	that	kb	−	ak	≤	M	,
i.e.,	b	∈	B.	Since	¯	¯	¯	f	(0	+	h)	−	f	(0)	−	∇f	(0)	·	h	¯	|f	(h)|	¯	¯=	≤	khkα−1	→	0	¯	¯	khk	khk	103	Copyright	©	2010	Pearson	Education,	Inc.	Thus	|f	(x)	−	L|	=	|x	−	1|	<	δ	=	ε	for	every	x	which	satisfies	0	<	|x	−	1|	<	δ.	7.2.3.	a)	Since	|xk+1	/(k	+	1)!|/|xk	/k!|	=	|x|/(k	+	1)	→	0	as	k	→	∞,	this	series	converges	pointwise	on	R	by	the	Ratio	Test.	√	2.2.5.	Case	1.
Thus	by	the	calculations	p	in	part	b),	choose	n	=	14.	2.3.5.	The	result	is	obvious	when	x	=	0.	Hence	integrating	term	by	term,	we	obtain	µ	¶	Z	π/2	Z	π/2	∞	∞	X	X	1	1	kπ	f	(x)	dx	=	cos(kx)	dx	=	sin	.	Since	g	is	nonnegative,	we	have	f	(x)	<	(2L	+	1)g(x)	for	x	∈	(b0	,	b).	c)	The	columns	of	B	are	T	(e1	)	=	(1,	−1),	T	(e2	)	=	·	·	·	=	T	(en−1	)	=	(0,	0),	and	T	(en	)	=
(−1,	1).	94	Copyright	©	2010	Pearson	Education,	Inc.	Copyright	©2010	Pearson	Education,	Inc.	By	definition,	ZZ	Z	1	Z	1−y	ω=−	S1	ZZ	Z	1	Z	ZZ	P	(0,	y,	z)	dy	dz,	0	0	1−z	ω=−	S2	R(x,	y,	0)	dx	dy,	0	Z	and	0	1	Z	ω=−	S3	1−z	Q(x,	0,	z)	dx	dz.	For	example,	Z	1	π	(f	(t)	+	g(t))	cos	kt	dt	π	−π	Z	π	Z	1	1	π	=	f	(t)	cos	kt	dt	+	g(t)	cos	kt	dt	=	ak	(f	)	+	ak	(g).	73
Copyright	©	2010	Pearson	Education,	Inc.	If	x	∈	[−M,	M	]	then	|fk	(x)−f	(x)|	<	².	c)	True.	To	show	E	⊆	f	−1	(f	(E)),	let	x	∈	E.	Since	f	0	=	−g	0	,	it	follows	that	f	0	(x1	)	<	0	and	f	0	(x2	)	>	0.	8.2.1.	a)	By	definition,	a	−	b	and	a	−	c	lie	in	the	plane.	11.3.1.	Since	they	are	all	C	1	on	their	domains,	they	are	all	differentiable	on	their	domains.	By	the	choice	of	δ,
it	follows	that	|²h	(x)|	≤	²khk.	Since	the	x	axis	lies	to	the	left	of	the	yz	plane,	we	can	parameterize	this	curve	by	φ(t)	=	(3	sin	t,	0,	3	cos	t),	I	=	[0,	2π].	4.3.6.	By	the	Mean	Value	Theorem,	f	(c)	=	f	(c)	−	f	(a)	=	(c	−	a)f	0	(x1	)	and	f	(c)	=	f	(c)	−	f	(b)	=	(c	−	b)f	0	(x2	)	for	some	x1	,	x2	∈	(a,	b).	58	Copyright	©	2010	Pearson	Education,	Inc.	3.4.6.	a)	Suppose	I
has	endpoints	a,	b.	13.6.1.	a)	The	trivial	parameterization	of	z	=	−x,	x2	+	y	2	≤	1,	has	normal	(1,	0,	1),	whose	induced	orientation	on	C	is	counterclockwise.	Then	|xn	−	yn	|	=	1/n	→	0	as	n	→	∞,	but	neither	xn	nor	yn	converges.	Since	m	≤	f	(0)	<	f	(x)	for	all	x	∈	/	[−N,	N	],	it	follows	that	m	is	the	absolute	minimum	of	f	on	R.	11.4.1.	By	the	Chain	Rule,	∂w
∂F	∂x	∂F	∂y	∂F	∂z	=	+	+	,	∂p	∂x	∂p	∂y	∂p	∂z	∂p	∂w	∂F	∂x	∂F	∂y	∂F	∂z	=	+	+	.	Since	xk	∈	E	too,	it	follows	that	xk	∈	U	for	large	k.	Taking	the	limit	of	√	below.	Since	z	≥	0,	the	solution	with√both	minus	signs	is	extraneous.	4.5.8.	By	4.5.6a,	f	−1	is	differentiable	on	[a,	b].	Then	both	f	and	g	are	strictly	decreasing,	hence	1–1	on	R.	It	follows	from	Lemma	1.40
that	A	is	at	most	countable,	a	contradiction.	b)	By	Gauss’	Theorem	and	Exercise	13.5.8,	ZZ	ZZZ	ZZZ	u∇v	·	n	dσ	=	∇	·	(u∇v)	dV	=	(∇u	·	∇v	+	u∆v)	dV.	If	f	(x)	<	1,	then	f	(x)	<	1	≤	1	+	f	(x).	Since	in	a	bounded	interval,	E	is	bounded.	c)	If	∇f	(a)	=	0	then	Du	f	(a)	=	0	and	there	is	nothing	to	prove.	On	the	other	hand,	since	d/dt(te−(s−a)t	)	=	e−(s−a)t	(1	−	(s
−	a)t),	integration	by	parts	yields	Z	∞	L{tf	(t)}(s)	=	Z	−t(s−a)	te	f	(t)e	−at	∞	dt	=	−	0	e−(s−a)t	φ(t)(1	−	(s	−	a)t)	dt.	Similarly,	if	rx	∈	Q	and	r	6=	0,	then	x	∈	Q,	a	contradiction.	3.4	Uniform	continuity.	,	N	},	then	by	repeating	the	proof	of	part	b),	we	can	choose	smooth	curves	{(ψj	,	[(j	−	1)/N,	j/N	])	:	j	=	1,	.	Pn−1	Pn−1	6.1.10.	0	3	k(1,	f	(t),	0)k	(1	+	(f	0
(t))2	)3/2	13.2	Oriented	Curves.	Therefore,	−Fxn−1	∂g1	∂g2	∂gn	−Fxn	−Fx1	···	=	···	=	(−1)n	.	But	k	k	k=1	P	k=1	ak	b	converges,	so	we	can	add	it	P∞	P∞	∞	to	both	sides	of	s	=	k=1	ak	(bk	−	b)	≡	k=1	ak	bk	−	k=1	ak	b.	b)	Since	sin2	hx	is	increasing	on	[2n−1	,	2n	],	sin2	kh	=	sin2	kπ	π	1	≥	sin2	=	2n+1	4	2	for	k	∈	[2n−1	,	2n	].	Hence	by	the	Weierstrass
M-Test,	the	j-th	term	by	term	derivative	of	Sf	converges	uniformly	on	R.	Then	div	F	=	0.	Hence	¯	¯	¯	¯	¯	∂f	¯	¯	¯	¯	¯	=	lim	¯	f	(0,	0,	.	Then	there	is	an	²	>	0	such	that	B²	(a)	∩	E	=	∅.	9.3.8.	a)	Repeat	the	proof	of	Remark	3.4,	replacing	the	absolute	value	by	the	norm	sign.	e)	By	assumption	v),	part	d),	and	the	Chain	Rule,	(cos	x)0	=	−	cos(π/2	−	x)	=	−	sin	x.
8.1.5.	Let	a,	b,	c	denote	the	vertices	of	∆,	and	C	be	the	line	segment	between	a	and	b.	Since	f	(15)	=	0.0068,	n	=	15	terms	will	estimate	the	value	to	an	accuracy	of	10−2	.	8.1.3.	It	is	clear	that	equality	holds	if	either	x	=	0	or	y	=	0.	Since	|x|	is	periodic	and	continuous	on	[−π,	π],	it	follows	from	Theorem	14.29	that	this	series	converges	to	|x|	uniformly	on
[−π,	π].	9.5.5.	By	Exercise	8.3.8,	there	exist	²	:=	²x	>	0	such	that	V	=	∪x∈V	B²	(x).	4	13.5.2.	a)	By	Green’s	Theorem,	Z	Z	d	Z	b	ω=	C	(y	−	1)	dx	dy	=	(b	−	a)(c	−	d)(c	+	d	−	2)/2.	c)	Using	part	b)	and	the	product	rule,	(f	/g)0	=	(f	·	1/g)0	=	f	0	·	1	g0	gf	0	−	f	g	0	−f	2	=	.	11.5.11.	By	definition,	then,	xn	→	a	as	n	→	∞.	1.2.10.	(See	the	argument	which	appears	in
c)	above.)	10.2.2.	a)	If	a	is	not	a	cluster	point,	then	some	Br	(a)	contains	only	finitely	many	points	of	E	\	{a},	say	x1	,	.	If	k	:=	j	−	1	≥	0	then	0	≤	k	<	j.	Thus	the	original	series	diverges	when	0	<	q	≤	1	and	converges	when	q	>	1.	kuk2	In	particular,	the	transitions	are	C	p	on	g(U	∩	V	).	Since	φ0	(θ)	=	(f	0	(θ)	cos	θ	−	f	(θ)	sin	θ,	f	0	(θ)	sin	θ	+	f	(θ)	cos	θ)	we
have	kφ0	(θ)k2	=	|f	0	(θ)|2	+	|f	(θ)|2	6=	0.	Since	E	and	A	are	closed,	it	follows	that	C	is	closed.	Moreover,	it	is	obvious	that	they	are	nested.	b)	If	f	(b)	<	f	(a)	then	by	part	a),	given	y0	∈	(f	(b),	f	(a))	there	is	an	x0	∈	(a,	b)	such	that	y0	=	f	(x0	)	and	DR	f	(x0	)	≤	0.	Then	(x	−	²,	x	+	²)	∩	E	contains	infinitely	many	points,	so	x	is	a	cluster	point	of	E.	If	(xk	,	yk	)	∈
R	converges	to	some	(x,	y)	then	a	≤	xk	≤	b	implies	a	≤	x	≤	b	and	similarly,	c	≤	y	≤	d.	By	a	similar	argument,	if	k2	>	r1	is	least	such	that	sk2	>	y,	then	sr1	<	x	s`	≤	y	+	bk2	for	all	r1	≤	`	≤	k2	.	6.3.0.	a)	True.	Also	f	+	−	f	−	=	2f	/2	=	f	and	f	+	f	−	=	2|f	|/2	=	|f	|.	Hence,	if	x,	y	∈	R	and	kx	−	yk	<	δ,	then	(*)	kT	(x,	y)k	≤	M	²	·	kx	−	yk.	Since	2x3	−	3x	+	1	=	(x
−	1)(2x	+	2x	−	1)	implies	that	x	=	1,	(−1	±	3)/2,	√	√	the	second	inequality	is	equivalent	to	(−1	−	3)/2	<	x	<	(−1	+	3)/2	or	x	>	1.	a	Rb	Rc	c	Rb	Thus	(U	)	a	f	(x)	dx	≥	(U	)	a	f	(x)	dx	+	(U	)	c	f	(x)	dx.	d)	Integrating	by	parts	twice,	Z	∞	Z	Z	1	b	∞	−st	1	b2	∞	−st	e−st	cos	bt	dt	=	−	e	sin	bt	dt	=	−	2	e	cos	bt	dt	s	s	0	s	s	0	0	R∞	for	s	>	0.	n	a	7.1.9.	a)	By	the
Extreme	Value	Theorem,	f	is	bounded	on	[a,	b]	and	there	are	positive	numbers	²0	and	M	such	that	²0	<	|g(x)|	<	M	for	all	x	∈	[a,	b].	It	follows	from	the	Limit	Comparison	Test	that	we	need	only	consider	k=1	(kq	k	)−1	.	Since	|	cos(n2	+	n	+	1)|	≤	1,	it	follows	that	{xn	}	is	bounded.	b)	By	Theorem	4.33,	f	−1	is	differentiable	on	(c,	d)	and	(f	−1	)0	(x)	=	1/f	0
(f	−1	(x)).	c)	By	Theorem	12.7	we	must	show	that	Vol	(E1	∪	E2	)	≥	Vol	(E1	)	+	Vol	(E2	).	Since	the	ratio	of	successive	coefficients	is	(2k	−	1)(2k	+	2)	=	1	−	(3/2)/(k	+	1),	it	follows	from	Raabe’s	Test	that	the	series	converges	absolutely	at	both	endpoints.	If	k	>	0	then	nq	is	a	root	of	the	polynomial	xj	−	nk	.	Then	we	can	compute	cos	θ	two	ways:	|w	·	(a,	b,
c)|	h	=	|	cos	θ|	=	.	Thus	by	theorem	10.52,	g	is	uniformly	continuous	on	E.	u2	2	c)	Since	div	(x,	y,	z)	=	3,	we	have	by	Gauss’	Theorem	that	Z	1	Vol	(E)	=	x	dy	dz	+	y	dz	dx	+	z	dx	dy.	Define	g(x)	:=	limn→∞	f	(xn	).	Modify	the	proofs	of	Remark	2.4,	Theorems	2.6,	2.8,	and	Remark	2.28	by	replacing	the	absolute	value	signs	by	the	metric	ρ.	By	definition,
there	is	a	partition	P²	of	[a,	b]	such	that	U	(f,	P²	)	−	L(f,	P²	)	<	².	b)	The	same	estimates	can	be	obtained.	By	Exercise	8	in	8.3,	E	\	C	is	relatively	open	in	E,	i.e.,	E	\	C	=	E	∩	V	for	some	open	V	.	Indeed,	Z	1	Z	1	f	(x,	y)	dx	dy	=	0	0	=	∞	Z	X	2−k+1	−k	k=1	2	Z	∞	X	2−k+1	k=1	2−k	µZ	1	¶	f	(x,	y)	dx	dy	0	µZ	1	φk	(y)	¶	(φk	(x)	−	φk+1	(x))	dx	dy	=	0,	0	but	Z	1	Z
1	f	(x,	y)	dy	dx	=	0	0	∞	Z	X	k=1	Z	1	2−k+1	µZ	¶	1	f	(x,	y)	dy	2−k	Z	1	=	φ1	(x)φ1	(y)	dy	dx	+	1/2	dx	0	0	∞	Z	X	k=2	µZ	2−k+1	2−k	φk	(x)	¶	1	(φk	(y)	−	φk+1	(y))	dy	dx	0	=	1	+	0	=	1.	It	is	relatively	closed	in	B√2	(2,	0)	because	the	limit	of	any	convergent	sequence	(in	the	SUBSPACE	sense)	in	the	set	stays	in	the	set.	Thus	Rx	=	y	+	fx	and	we	may	set	f	=	0,
i.e.,	R	=	xy.	u	2	(4	+	4x	−	3x2	)	dx	=	1.	Thus	the	integral	converges	if	and	only	if	p	<	1.	Differentiating	term	by	term,	we	obtain	f	0	(x)	=	∞	X	k=1	Rx	∞	X	kxk−1	kxk−1	≤	=:	g(x)	((−1)k	+	4)k	3k	k=1	P∞	for	0	≤	x	<	3.	10.4.2.	Let	A,	B	be	compact	sets.	10.5.5.	Suppose	A	is	not	connected.	Therefore,	ur	=	gy	cos	θ	−	gx	sin	θ	=	vθ	/r	and	vr	=	−fy	cos	θ	+	fx
sin	θ	=	−uθ	/r.	2	d)	The	boundary	of	S	is	given	by	2x2	+	z	2	=	1,	y	=	x,	oriented√in	the	counterclockwise	direction	when	viewed	√	from	far	out	the	x	axis.	3	137	Copyright	©	2010	Pearson	Education,	Inc.	0	c)	The	boundary√of	S	is	given	by	x2	+	y	2	=	10,	z	=	0,	oriented	in	the	clockwise	direction.	But	Eα	is	an	interval,	hence	(a,	b)	⊂	Eα	for	all	α	∈	A,	i.e.,
(a,	b)	⊂	E.	Hence	by	the	Second	Multiplicative	Property	and	Theorem	1.20,	inf	E	+	²	=	−(sup(−E)	−	²)	>	a	>	−	sup(−E)	=	inf	E.	Since	f	(t)	≤	F	(x0	)	for	all	t	∈	[a,	x0	],	it	follows	that	t0	∈	(x0	,	c].	From	part	a),	we	see	that	Pn	this	function	has	only	one	critical	point:	(a0	,	b0	).	By	the	Mean	Value	Theorem,	f	(n	+	1)	−	f	(n)	=	f	0	(cn	)	for	some	cn	∈	(n,	n	+
1),	n	∈	N.	We	conclude	that	f	(−2,	0)	=	−2	is	the	minimum,	f	(1/2,	±	15/2)	=	17/4	is	the	maximum	(and	f	(2,	0)	=	2	is	a	saddle	point).	b)	Let	²	>	0	and	x	∈	[a,	b].	If	a	=	b	then	a	+	c	=	b	+	c	since	+	is	a	function.	Therefore,	it	suffices	to	prove	that	given	any	continuous	f	on	[a,	b],	there	is	a	polynomial	Q,	with	rational	coefficients,	such	that	|f	(x)−Q(x)|	<	ε
for	all	x	∈	[a,	b].	x	√	√	This	last	quotient	converges	to	0	by	Theorem	2.12.	Thus	V	(E;	Gm	)	=	2m	·	22m	=	2−m	<	ε.	Since	c	is	a	point	of	discontinuity,	it	follows	that	f	0	(c−)	<	f	0	(c+).	10.4.6.	Suppose	that	f	is	uniformly	continuous	on	E.	,	xN	such	that	N	[	X=	Bxj	.	To	prove	this,	combine	the	inequality	in	part	b)	above	with	the	Comparison	Theorem	for
improper	integrals.	It	is	clear	by	construction	that	f	is	1–1.	Since	the	geometric	series	k=0	(r0	/r)	<	∞,	it	follows	from	the	Comparison	Test	that	k=0	ak	r0	converges,	which	contradicts	the	fact	that	r0	>	R	and	R	is	the	radius	of	convergence.	If	y	=	0√then	the	constraint	implies	x	=	±2.	Thus	the	inequality	holds	for	all	k	∈	N.	9.3.1.	a)	The	domain	of	f	is
all	(x,	y)	∈	R2	such	that	x	6=	1	and	y	6=	1.	d)	The	set	is	closed	but	not	bounded	(since	(n,	1/n)	∈	E	for	all	n	∈	N).	Hence	by	Theorem	10.56,	f	(E)	is	an	interval.	11.5.2.	We	must	show	D(`)	f	((a,	b);	(h,	k))	=	`	µ	¶	X	`	j=0	∂`f	∂xj	∂y	`−j	j	(a,	b)hj	k	`−j	for	`	∈	N.	c)	Let	a	=	0	and	b	=	1.	In	particular,	the	chord	from	(x1	,	f	(x1	))	to	(x2	,	f	(x2	))	lies	on	or	above
the	graph	of	y	=	f	(x),	i.e.,	f	is	convex.	b)	Let	xn	=	n	and	yn	=	n	+	1/n.	Rx	14.4.3.	By	the	proof	of	Corollary	14.27,	if	a0	(f	)	=	0	then	F	(x)	:=	0	f	(t)	dt	is	continuous,	periodic,	of	bounded	variation,	ak	(F	)	=	bk	(f	)/k,	and	bk	(F	)	=	−ak	(f	)/k	=	0	for	k	∈	N.	Thus	∩x∈(0,1]	[x	−	1,	x	+	1]	=	(0,	1].	11.7.5.	If	fxy	(a,	b)	6=	0	then	fxx	(a,	b)	=	fyy	(a,	b)	=	0	and	it
follows	that	D(2)	f	(a,	b)	=	fxy	(a,	b)hk	takes	both	positive	and	negative	values	as	h,	k	range	over	R.	√	√	b)	Clearly,	fx	=	1/(2	x),	fy	=	1/(2	y),	fxx	=	−1/(4x3/2	),	fxy	=	0,	fyy	=	−1/(4y	3/2	),	fxxx	=	3/(8x5/2	),	fyyy	=	3/(8y	5/2	),	and	all	mixed	third	order	partials	are	zero.	When	p	<	0,	the	result	is	false,	since	ak	=	1/k	1−p	generates	a	convergent	series	by	the
p-Series	Test	(1	−	p	is	GREATER	than	1	in	this	case),	but	|ak	|/k	p	=	1/k	which	generates	the	harmonic	series,	which	diverges.	In	particular,	it	follows	from	assumption	ii)	that	(1	−	cos	x)/x	→	0	as	x	→	0.	5.1.4.	a)	If	f	(x0	)	6=	0	then	given	²	>	0	choose	by	the	Sign	Preserving	Property	a	δ	>	0	such	that	|f	(x)|	≥	²	for	|x	−	x0	|	≤	δ.	Thus	f	is	continuous	on	R2
.	8.2.5.	a)	T	(1,	0)	=	T	(1,	1)	−	T	(0,	1)	=	(−1,	π,	−1),	and	T	(0,	1)	=	(4,	0,	1).	Let	²	>	0	and	choose	N	so	large	that	k=N	+1	|ak	|/k	<	²/2.	If	N	>	N2	then	|(S0	(x)	−	f	(x))	+	·	·	·	+	(SN	(x)	−	f	(x))	N	+1	µ	¶	N1	X	1	²	N	−	N1	²	²	≤	|Sk	(x)	−	f	(x)|	+	<	+	=	².	,	jn	.	Since	wxx	(c,	t2	)	−	wxx	(x2	,	t2	)	→	0	as	h	→	0,	and	w(x2	,	t2	)	≤	w(x2	+	h,	t2	)	(this	point	is	a	local
minimum),	it	follows	that	wxx	(x2	,	t2	)	≥	0.	√	Note:	If	we	replace	φ	by	g(x)	=	sin	x	−	2	2x/π,	then	the	same	argument	shows	g(x)	≥	0	for	x	∈	[0,	π/4],	and	we	obtain	¯Z	¯	µ	¶	¯	π/2	¯	π	√	π	π	1	¯	¯	−a	sin	x	e	dx¯	≤	e−a	2/2	+	√	≤	√	+1	,	¯	¯	0	¯	4	2a	2	2a	2	e	an	improvement	over	the	estimate	we	already	obtained.	If	n	>	9	then	(n	+	3)2	=	n2	+	6n	+	9	<	n22	+
7n	<	n2	+	8n	+	16	=	(n	+	4)2	.	If	x	<	y	belong	to	[a,	b],	then	f	(x)	≤	f	(y)	and	g(x)	≤	g(y).	For	p	=	−1/e,	the	series	converges	conditionally	by	the	Alternating	Series	Test	and	what	we	just	proved.	u→∞	1	u	Hence	the	series	diverges	by	the	Logarithmic	Test.	∂x∂y	∂p	∂p	∂x∂z	∂p	∂p	∂y∂z	∂p	∂p	11.4.2.	a)	By	the	Chain	Rule	é	[	∂h/∂x1	(a)	.	10k	10k	10	sn	:=	k=1
k=1	Then	0	<	x	−	sn	<	1/10n	,	so	by	a)	choose	xn+1	such	that	xn+1	/10n+1	≤	x	−	sn	<	xn+1	/10n+1	+	1/10n+1	,	i.e.,	n+1	X	k=1	n+1	X	xk	xk	1	≤	x	<	+	n+1	.	10.3.11.	E	13.4.5.	By	definition,	ZZZ	Z	1	Z	Z	1−z	1−y−z	Px	dV	=	Px	dx	dy	dz	E	Z	0	0	1Z	0	1−z	=	(P	(1	−	y	−	z,	y,	z)	−	P	(0,	y,	z))	dy	dz.	As	x	ranges	over	E,	the	bk	’s	exhibit	all	possible
combinations	of	0’s	and	2’s,	hence	the	binary	coefficients	of	f	(x)	exhibit	all	possible	combinations	of	0’s	and	1’s.	j=1	Let	x	∈	K.	If	not,	then	some	xn	satisfies	|f	(xnk	)|	>	ε0	for	k	∈	N,	so	|f	(xnk	)|/(xnk	−	a)	>	ε0	/(xnk	−	a).	12.5.2.	Products	of	C	∞	functions	are	C	∞	functions.	8.3.6.	a)	If	C	is	relatively	closed	in	E,	then	there	is	a	closed	set	A	such	that	C	=	E
∩	A.	If	it	holds	for	some	n	≥	3	then	by	a),	(n	+	1)2	=	n2	+	2n	+	1	<	2n	+	2n	=	2n+1	<	2n+1	+	1.	e)	Let	f	(x)	=	π/2	−	arctan	x.	If	x0	=	0,	then	xn	=	0	for	all	n.	2	2	b)	If	x	=	sin	θ	then	dx	=	cos	θ	dθ	so	√	Z	3/2	0	√	Z	π/3	x3	f	(	1	−	x2	)	sin3	θ	cos	θf	(cos	θ)	√	dx	=	dθ.	Similarly,	since	k=1	a−	k	=	∞	we	can	choose	an	integer	r1	>	k1	least	such	that	−	sr1	:=	b1
+	b2	+	·	·	·	+	br1	:=	sk1	−	a−	1	−	·	·	·	−	ar1	−k1	<	x,	and	sr1	≥	x	+	br1	.	Printed	in	the	United	States	of	America.	x∈V	92	Copyright	©	2010	Pearson	Education,	Inc.	c)	Let	a	=	−1,	b	=	1,	and	f	(x)	=	x3	.	Since	1/n	→	0	as	n	→	∞,	it	follows	that	xn	satisfies	the	hypotheses	of	Exercise	2.4.4.	Hence	xn	must	converge	to	a	finite	real	number.	Since	(|t|p	)0	=
p|t|p−1	exists	forP	all	t	∈	R	and	n	p	>	1,	it	follows	from	Lagrange’s	Theorem	that	if	f	(x)	is	an	extremum	subject	to	the	constraint	k=1	|xk	|p	=	1	p−1	2	p	then	2xj	=	p|xj	|	λ.	Thus	E	is	sequentially	compact.	c)	This	set	is	bounded	but	not	closed.	13.1.1.	(ψ,	I)	runs	clockwise.	Then	f	(x,	y)	=	x2	+	2x	−	y	2	=	5	cos2	θ	+	4	cos	θ	−	1	=:	h(θ).	k=n+2	(2ak	/x	Ã	N
X	Moreover,	by	the	claim	and	(*),	!	k	−1/x2	(ak	/x	)e	−0	=	0.	β)	Since	f	(x)	=	x2	is	increasing	on	[0,	∞),	Mj	=	x2j	:=	(j/n)2	and	mj	=	x2j−1	:=	((j	−	1)/n)2	.	5.1.0.	a)	False.	Let	y	∈	Br	(x)	and	let	P	be	a	polygonal	path	from	x0	to	x	which	lies	in	E.	Since	f	(x)	≥	c	>	0	for	all	x	∈	[a,	b],	it	is	easy	to	see	that	if	x,	y	∈	[xj−1	,	xj	],then	f	1/m	(x)	−	f	1/m	(y)	≤	Mj	(f	)	−
mj	(f	)	Mj	(f	)	−	mj	(f	)	=	Cm	(m	+	1)c(m−1)/m	45	Copyright	©	2010	Pearson	Education,	Inc.	It	follows	that	1/f	is	differentiable	at	a	and	its	derivative	is	T	.	Choose	δ	>	0	such	that	|φ(t)|	<	²	for	0	≤	t	<	δ.	Hence,	√	√	(P,	Q,	R)	·	φ0	(t)	=	(cos	t	sin2	t/4,	−	cos	t	sin2	t/2,	0)	·	(−	sin	t,	cos	t/	2,	cos	t/	2)	√	=	−	sin3	t	cos	t/4	−	sin2	t	cos2	t/(2	2).	Then	f	0	(x)	=	3x2
+	1	>	1	for	all	x	∈	(0,	∞),	but	x2	/f	(x)	<	1/x	→	0	as	x	→	∞.	Finally,	√	xn+1	1	−	1	−	xn	1	−	(1	−	xn	)	1	1	√	=	=	→	=	.	11	Copyright	©	2010	Pearson	Education,	Inc.	R1	as	n	→	∞,	0	x2	dx	=	1/3.	Thus	the	Taylor	polynomials	fn	of	f	converge	to	f	uniformly	on	[a,	b]	⊂	I.	xn−1	+	yn−1	√	√	√	It	follows	that	xn	>	yn−1	>	1,	so	xn	>	xn	yn−1	=	yn	>	1	·	1	=	1.
Substituting	2x	for	x,	we	have	cos(2x)	=	x2	+	cos(2x)	=	1	−	x2	+	∞	X	(−4)k	x2k	(2k)!	k=2	for	x	∈	R.	By	definition,	h/(1	+	e1/h	)	−	0	1	=	lim	=	0.	V	is	open	since	it	is	a	union	of	open	intervals.	Nevertheless,	it	is	clear	that	|x4	−	π|	<	0.0000000005	which	is	much	smaller	than	0.000136465.	b)	dz	=	y	cos(xy)	dx	+	x	cos(xy)	dy.	13.5.3.	a)	By	Gauss’	Theorem,
ZZ	Z	3	Z	2	Z	1	F	·	n	dσ	=	S	0	0	(2	+	ez	)	dx	dy	dz	=	2(5	+	e3	).	c)	Rationalizing	the	expression,	we	obtain	√	3n	+	2	−	√	n=	√	√	√	√	(	3n	+	2	−	n)(	3n	+	2	+	n)	2n	+	2	√	=√	√	√	→∞	3n	+	2	+	n	3n	+	2	+	n	√	as	n	→	∞	by	the	method	of	Example√2.13.	b)	The	converse	is	false.	1−r	Since	rn	→	0	as	n	→	∞,	we	see	that	xn	is	Cauchy,	hence	converges	to	some	b	∈	I,
since	I	is	closed.	Thus	the	formula	is	correct	for	this	case.	b)	Repeat	the	proofs	of	Theorem	2.8	and	Remark	2.28,	replacing	the	absolute	value	by	the	norm	sign.	S	E	b)	The	boundary	of	S	√	is	given	√	by	x2	+	y	2	=	3,	z	=	0,	oriented	in	the	counterclockwise	direction.	Let	φ(t)	=	t	log(1	−	x/t).	10.6	Continuous	Functions.	A	similar	argument	shows	that	{x
∈	Rn	:	kx	−	ak	>	r}	and	{x	∈	Rn	:	kx	−	ak	<	s}	are	both	open,	hence	E	:=	{x	∈	Rn	:	s	≤	ρ(x,	a)	≤	r}	=	{x	∈	Rn	:	kx	−	ak	>	r}c	∩	{x	∈	Rn	:	kx	−	ak	<	s}c	is	closed.	By	the	choice	of	δ,	we	conclude	that	F	(x0	)	≥	f	(x0	)	≥	f	(t0	)	−	ε0	/2	=	F	(c)	−	ε0	/2,	i.e.,	F	(c)	−	F	(x0	)	≤	ε0	/2	contrary	to	the	choice	of	x0	.	If	m	and	m	e	are	both	infima	of	E	then	m	≤	m	e
and	m	e	≤	m,	i.e.,	m	=	m.	Thus	f	0	(x)	exists.	|t1	|	|t2	|	kak2	|t1	|	|t2	|	Hence	θ	=	0	or	π.	Let	²	>	0	and	choose	N	so	large	that	n	≥	N	implies	|xn	|	<	²2	.	14.4.5.	a)	Fix	h	∈	R	and	k	∈	N.	(It	holds	for	n	=	1,	and	if	it	holds	for	n	then	6(n	+	2)	=	6(n	+	1)	+	6	≤	4	·	3n	+	6	<	4	·	3n	+	8	·	3n	=	4	·	3n+1	.)	Therefore,	3(n	+	1)2	+	3(n	+	1)	+	1	≤	2	·	3n	+	6(n	+	1)	≤	2	·
3n	+	4	·	3n	=	2	·	3n+1	.	On	the	other	hand,	the	right	side	lies	between	1/((2p	+	1)(2p	+	2))	and	1/((2p	+	1)(2p	+	2))	−	1/((2p	+	1)(2p	+	2)(2p	+	3)(2p	+	4)),	i.e.,	is	a	number	between	0	and	1.	2	√	c)	E	=	{(x,	y,	z)	:	0	≤	y	≤	1,	y	≤	x	≤	1,	0	≤	z	≤	x2	+	y	2	}	and	Z	1	Z	1	√	y	0	(x2	+	y	2	)	dx	dy	=	1	3	Z	1	(1	+	3y	2	−	y	3/2	−	3y	5/2	)	dy	=	0	26	.	15.3	Stokes’s
Theorem	on	Manifolds.	3	=	1.4.5.	0	≤	an	=	.	A	similar	argument	works	for	f	∧	g.	It	follows	from	the	definition	of	the	operator	norm	that	|f	(g(x))	−	f	(g(a))|	≤	kDf	(g(c))k	kx	−	ak.	P∞	6.2.6.	a)	If	an	/bn	→	0	then	an	≤	bn	for	n	large.	3	Vol	(E)	=	13.5.6.	a)	Parameterize	∂E	by	φ(t)	=	(cos	t,	sin	t),	I	=	[0,	2π].	k	b)	By	L’Hˆ	e−1	.	b)	f	(x)	=	x	is	uniformly
continuous	on	[0,	∞)	but	not	bounded	there.	CHAPTER	2	2.1	Limits	of	Sequences.	By	Exercise	1.2.9c,	r	+	2	is	irrational.	Then	A	−	B	=	[−1,	1]	so	sup(A	−	B)	=	1	6=	0	=	sup	A	−	sup	B.	=°	T	°	kxk	kxk	°	c)	Taking	the	supremum	of	this	last	inequality	over	all	x	6=	0,	we	obtain	kT	k	≤	M1	.	2	c)	log(k(k	+	2)/(k	+	1)	)	=	log(k/(k	+	1))	−	log((k	+	1)/(k	+	2)).
5.3.10.	CHAPTER	7	7.1	Uniform	Convergence	of	Sequences.	10.1.8.	a)	If	fn	is	Cauchy	in	C[a,	b],	then	given	ε	>	0	there	is	an	N	such	that	m,	n	≥	N	implies	|fn	(x)	−	fm	(x)|	≤	kfn	−	fm	k	<	ε	for	all	x	∈	[a,	b].	Also,	by	the	homogeneous	property	of	integration,	kαf	k1	=	|α|	kf	k1	,	so	kf	−	gk1	is	homogeneous.	By	parts	iv)	and	v),	kx×yk2	=	(x×y)·(x×y)	=	x·(y
×(x×y))	=	x·((y	·y)x−(y·x)y)	=	(y	·y)(x·x)−(x·y)2	.	8	Copyright	©	2010	Pearson	Education,	Inc.	b)	Since	1	π	Z	π	Z	|f	(x)|2	dx	=	−π	π	x2	dx	=	−π	2π	2	,	3	it	follows	from	part	a)	and	Parseval’s	Formula	that	∞	X	4	2π	2	=	2	k	3	k=1	as	promised.	8	12.3.4.	a)	Since	x	+	y	=	3	and	x2	+	y	2	=	1	do	not	intersect,	Z	Z	1	Vol	(E)	=	√	1−x2	Z	√	−	1−x2	−1	p	p	(3	1	−	x2
−	x	1	−	x2	)	dx	=	3π.	Therefore,	−C	≤	xn	≤	C,	i.e.,	|xn	|	<	C	for	all	n	∈	N.	Hence,	the	cited	result	follows	immediately	from	the	Second	Mean	Value	Theorem	for	integrals.	R∞	R∞	c)	Using	the	substitution	u	=	log	x,	du	=	dx/x,	we	have	e	dx/(x	logp	x)	=	1	du/up	.	6.1.4.	Since	ak+1	−	2ak	+	ak−1	=	(ak+1	−	ak	)	+	(ak−1	−	ak	),	this	series	is	the	sum	of	two
telescopic	series.	Since	f	(a)	and	f	(b)	both	belong	to	f	(E),	the	interval	(f	(a),	f	(b))	is	a	subset	of	f	(E).	It	follows	(see	Exercise	1.6.5a)	that	g	◦	f	takes	N	onto	B.	Consequently,	lim	supn→∞	|Bn	−	b|	≤	².	,	xn	}	such	that	U	(f,	P	)	−	L(f,	P	)	<	min{Cm	²,	c−2	²},	where	Cm	:=	(m	+	1)c(m−1)/m	.	Since	m0	:=	P	(x0	)/2	>	0	use	3.2.3b	again	to	choose	δ0	>	0	such
that	0	<	m0	<	P	(x)	for	|x	−	x0	|	<	δ0	.	Notice	that	k	2	≤	k	4	for	all	k	∈	N.	Therefore,	P∞	k=1	(a2k	n	X	n→∞	+	a2k+1	)	converges	then	(a2k	+	a2k+1	)	→	L	and	k=1	P∞	k=1	2n	X	k=2	ak	=	−a2n+1	+	2n+1	X	ak	→	L	k=2	ak	=	a1	+	L	converges.	Since	f	(x0	)	is	a	proper	local	maximum,	there	is	a	c	∈	(x0	−	δ,	x0	)	such	that	f	(c)	<	f	(x0	).	6.3	Absolute
Convergence.	If	they	intersect,	say	φ(t)	=	ψ(u),	then	t	=	3u,	t	=	4u,	and	0	=	1,	a	contradiction.	Thus	use	Dini’s	Theorem.	13.3.4.	a)	Parameterize	S	by	(φ,	E),	where	φ(u,	v)	=	(u,	v,	0).	4.1.0.	a)	False.	Hence	by	Exercise	1.6.5a,	g	◦	f	takes	A	onto	N.	11.3	Derivatives,	Differentials,	and	Tangent	Planes.	c)	By	the	Chain	Rule,	(g	◦	f	)0	(3)	=	g	0	(f	(3))f	0	(3)	=
bc.	On	the	other	hand,	Vol	(E	0	)	≤	Vol	(E)	≤	Vol	(E)	by	Exercise	12.1.6a.	2.4.7.	a)	Suppose	a	is	a	cluster	point	for	some	set	E	and	let	r	>	0.	f)	Since	2	−	(−1)n	/n2	=	2	−	1/n2	when	n	is	even	and	2	+	1/n2	when	n	is	odd,	inf	E	=	7/4	and	sup	E	=	3.	Rd	Rd	Rc	5.1.5.	By	hypothesis,	c	f	(x)	dx	=	a	f	(x)	dx	−	a	f	(x)	dx	=	0	for	all	c,	d	∈	[a,	b].	Then	by	part	c)	and
Exercise	12.4.9,	|	det(S)|	·	Vol	(φ(Q))	=	Vol	(S	◦	φ(Qj	))	≤	C²	|Qj	|	for	j	large.	By	Theorem	8.32,	E	has	no	boundary	if	and	only	if	E	\	E	o	=	∂E	=	∅,	i.e.,	if	and	only	if	E	=	E	o	.	By	repeating	the	steps	in	Case	2,	we	conclude	that	xn	decreases	from	x0	≥	3	to	the	limit	3.	−∞	<	s	<	−∞.	10.5.2.	a)	It	is	relatively	open	in	{(x,	y)	:	y	≥	0}	because	each	of	its	points
lies	in	a	relative	open	ball	which	stays	inside	the	set.	b)	Since	|x	+	3|	≤	|x|	+	3,	|x|	≤	1	implies	|x2	+	2x	−	3|	=	|x	+	3|	|x	−	1|	≤	4|x	−	1|.	1	.	2	pλ	j=1	xj	j=1	Pn	Hence	j=1	x2j	=	m(p−2)/p	.	21	Copyright	©	2010	Pearson	Education,	Inc.	E	Thus	∇u	=	0,	i.e.,	u	is	constant	on	E.	Therefore,	kν	0	(s0	)	×	ν	00	(s0	)k	=	kν	00	(s0	)k	=	κ(x0	).	,	9}	and	define	f	on	E1
×	E2	×	·	·	·	by	taking	each	point	(x1	,	x2	,	.	Notice	that	n	≥	1	implies	−3n	≤	−3	so	1	−	3n	≤	−2.	In	this	case,	Mj	=	mj	=	0	when	j	<	n/2,	Mj	=	mj	=	1	when	j	>	n/2	+	1,	and	Mj	(f	)	=	1	=	mj	(f	)	+	1	otherwise.	6.3.3.	a)	By	the	Integral	Test	(see	Exercise	6.2.2d)	it	converges	for	all	p	>	1	and	diverges	for	0	<	p	≤	1.	4t	4t2	2t	√	2	b)	If	x	≥	a	then	u(x,	t)	≤	e−a
/4t	/	4πt	→	0	as	t	→	0+	independently	of	x.	Therefore,	the	series	converges	absolutely	if	and	only	if	|p|	>	1.	2	2	2	7.2	Uniform	Convergence	of	Series.	d)	If	|bk+1	/bk	|	→	r	as	k	→	∞,	then	by	Remark	6.22iii	and	part	b),	lim	supk→∞	|bk+1	|/|bk	|	=	r	=	lim	inf	k→∞	|bk+1	|/|bk	|.	2	4.4.7.	a)	f	0	(x)	=	2e−1/x	/x3	is	evidently	continuous	for	x	6=	0.	Since	x	∈	[0,	2]
implies	ex	/n	≤	e4/n	,	it	follows	that	|ex	2	/n	for	all	x	∈	[0,	2]	and	n	≥	N	.	Since	nondegenerate	intervals	always	contain	infinitely	many	points,	it	follows	that	every	point	in	[a,	b]	is	a	cluster	point	of	[a,	b).	Therefore,	k=0	ak	rk	diverges	by	the	Divergence	Test,	which	contradicts	the	fact	that	r	<	R	and	R	is	the	radius	of	convergence.	Since	f	(x)	→	0	as	x	→
∞,	f	(x)	<	1	for	large	x.	16	Copyright	©	2010	Pearson	Education,	Inc.	Thus	{xn	}	is	decreasing	and	bounded	below	by	y1	and	{yn	}	is	increasing	and	bounded	above	by	x1	.	This	means	that	there	is	an	open	set	V	in	X	such	that	A0	=	V	∩	E.	A	similar	proof	using	part	b)	in	place	of	Theorem	9.26	proves	that	f	−1	(A)	∩	E	is	relatively	closed	in	E	for	every	A
relatively	closed	in	f	(E).	Thus	x	∈	∂E	∩	U	.	d)	Clearly,	2	sin2	x+2x−2x	cos2	x	=	2(x+1)	sin2	x	=	(x+1)(1−cos(2x)).	By	Theorem	9.5,	there	is	a	subsequence	xkj	which	converges,	say	to	b.	Thus	the	points	are	(a,	b)	=	((2k	+	1)π/2,	(−1)k	+	(2k	+	1)π/2)	for	k	∈	Z.	b)	Integrating	term	by	term,	we	have	Z	b	E(x)	dx	=	a	∞	X	xk+1	¯¯b	=	E(b)	−	E(a).	0	154
Copyright	©	2010	Pearson	Education,	Inc.	Since	f	(x)	>	g(x),	we	also	have	f	(x)	>	M	.	Therefore,	∆N	(x)	→	0	uniformly	in	x,	as	N	→	∞.	Hence	f	−1	(V	)	is	relatively	open	in	E.	Thus	the	trace	of	φ(t)	lies	in	the	second	quadrant	and	is	asymptotic	to	the	line	y	=	−x	as	t	→	−1+.	Thus	log(an	)	µ	¶	4	.	xn	=	1/4	+	1/(n	+	4)	is	strictly	decreasing	and	|xn	|	≤	1/4	+
1/5	<	1/2,	but	xn	→	1/4	as	n	→	∞.	On	C1	,	y	=	1	hence	dy	=	0,	and	Z	Z	1	y	dx	+	x	dy	=	1	dx	=	1.	Hence	given	M	>	0,	choose	N	Pn−1	so	large	that	sn	≥	M	for	n	≥	N	.	2	2	b)	Since	µ	Df	(x,	y)	=	1	y	1	x	¶	is	invertible	when	0	6=	∆f	(x,	y)	=	x	−	y,	the	inverse	exists	for	0	<	y	<	x	and	by	the	Inverse	Function	Theorem,	µ	¶	µ	¶	1	x	−1	x/(x	−	y)	1/(y	−	x)	D(f	−1	)(f
(x,	y))	=	(Df	(x,	y))−1	=	=	.	If	f	(x)	=	x2	+	1	=	g(x),	then	f	(x)	→	∞,	g(x)	>	0	for	all	x,	but	f	(x)/g(x)	=	1	does	not	converge	to	0.	c)	By	Remark	10.9,	choose	r0	,	s0	such	that	Br0	(x)	⊆	Br	(a)	and	Bs0	(x)	⊆	Bs	(b).	Thus	the	original	expression	is	rational	if	and	only	if	n	=	9.	For	each	x	∈	R,	1	=	f	(0)	=	f	(x	−	x)	=	f	(x)f	(−x).	8.1.8.	a)	The	Associative	Property	is
proved	in	the	text.	If	x	=	y	=	±∞	or	−x	=	y	=	∞,	there	is	nothing	to	prove.	4.2.4.	By	Exercise	4.1.2a,	(xn	)0	=	nxn−1	for	each	n	∈	N.	We	can	parameterize	this	intersection	by	φ(t)	=	(	z0	cos	t,	z0	sin	t,	z0	)	and	I	=	[0,	2π].	Since	F	is	continuous	on	[c,	d],	choose	x0	∈	[c,	d]	such	that	F	(x0	)	≥	F	(u)	for	all	u	∈	[c,	d].	Therefore,	the	original	integral
converges.	Then	f	(n)	(x)	=	g	(n−1)	(x)	is	continuous	but	f	(n+1)	=	g	(n)	exists	nowhere	on	R.	5.1.7.	a)	Let	P1	and	P2	be	partitions	of	[a,	b],	and	let	P	=	P1	∪	P2	.	Since	βk	>	1	and	xk	>	xβ	,	it	follows	from	the	Binomial	Series	expansion	that	µ	¶	β	k	(1	+	x)β	>	1	+	x	>	1	+	xβ	.	8.3.4.	Since	E1	is	closed	and	E2	is	open,	and	U	=	E1	∩	E2	,	it	is	clear	by
definition	that	U	is	relatively	open	in	E1	and	U	is	relatively	closed	in	E2	.	To	prove	the	right-most	inequality,	suppose	that	r	=	lim	supk→∞	ak+1	/ak	.	Chapter	13	13.1	Curves.	j!	(p	−	1)!	0	j=1	Since	F	(p)	(t)	=	D(p)	f	(a	+	t(x	−	a);	(x	−	a)),	the	result	follows	at	once.	Let	m	>	N	.	Since	x4	+yp	≤	(x2p	+y	2	)x2	+(x2	+y	2	)y	2	=	(x2	+y	2	)2	,	4	2	2	2	2	2	2	(x
+y	)/(x	+y	)	≤	x	+y	→	0	as	(x,	y)	→	(0,	0).	Hence	(φx	,	Ex	)	is	a	smooth	146	Copyright	©	2010	Pearson	Education,	Inc.	By	hypothesis,	k(1	−	|ak+1	/ak	|)	>	q	for	k	large.	b)	Let	(φ,	I)	be	a	piecewise	smooth	parameterization	of	∂S.	Summing	over	all	j,	we	obtain	n	n	X	X	2	x2j	=	pλ	|xj	|p	=	pλ,	j=1	j=1	115	Copyright	©	2010	Pearson	Education,	Inc.	Thus	an
equation	of	the	plane	tangent	to	K	perpendicular	to	x	+	z	=	5	at	a	point	(a,	b,	c)	is	(1,	0,	1)	·	(x	−	a,	y,	z	−	a)	=	0,	i.e.,	x	−	z	=	0.	,	xN	},	i.e.,	contains	only	finitely	many	points.	Since	{xn	}	⊆	E,	it	is	bounded.	To	decide	which,	look	at	the	discriminant.	The	base	of	P	is	kbk	and	its	altitude	is	kak	sin	θ.	Since	b	>	0,	m0	≥	1.	Thus	by	the	Heine-Borel	Theorem,
there	exist	SN	x1	,	.	Given	²	>	0	choose	N	∈	N	such	that	n	≥	N	implies	xn	∈	(x	−	²,	x	+	²).	R∞	R∞	R∞	5.4.1.	a)	1	(1	+	x)/x3	dx	=	1	x−3	dx	+	1	x−2	dx	=	1/2	+	1	=	3/2.	f	(f	(x0	)	Thus	set	x1	=	f	−1	(x0	).	ka	×	bk	kck	8.2.8.	If	(x0	,	y0	,	z0	)	lies	on	the	plane	Π	then	the	distance	is	zero,	and	by	definition,	ax0	+	by0	+	cz0	−	d	=	0.	Choose	M	>	0	so	large	that
|g1	(x)|	≤	M	for	x	∈	E.	p	11.4.8.	Let	w	=	x2	+	y	2	+	z	2	.	9.5.6.	a)	Suppose	E	is	compact,	and	let	xk	∈	E.	8.3	Topology	of	Rn	.	k(u,	v)k	Therefore,	it	follows	from	part	a)	that	lim	h→0	∆(h)	fy	(a	+	h,	b	+	th)	−	fy	(a,	b	+	th)	=	lim	=	fyx	(a,	b).	If	{xn	}	is	bounded	above,	then	there	is	an	x	∈	R	such	that	xn	→	x	(by	the	Monotone	Convergence	Theorem).	k=2n−1
Since	f	belongs	to	Lip	α,	it	follows	from	part	a)	that	n	2X	−1	(a2k	(f	)	+	b2k	(f	))	n	2X	−1	≤2	k=2n−1	(a2k	(f	)	+	b2k	(f	))	sin2	kh	k=2n−1	n	≤2	=	=	≤	∞	2X	−1	X	(a2k	(f	)	+	b2k	(f	))	sin2	kh	n=1	k=2n−1	∞	X	2	(a2k	(f	)	+	b2k	(f	))	sin2	k=1	Z	π	1	2π	kh	|f	(x	+	h)	−	f	(x	−	h)|2	dx	−π	2	Z	π	M	2π	|h|2α	dx	=	M	2	|h|2α	.	S	E	0	0	0	0	0	b)	The	boundary	of	S
consists	of	two	pieces.	12.1.6.	a)	If	Rj	∩	E1	6=	∅	then	Rj	∩	E2	6=	∅.	When	x	=	1	it	converges	by	the	Alternating	Series	Test.	But	(a/c,	b/c,	−1)	·	(1,	0,	1)	=	0	implies	that	a	=	c.	We	conclude	that	f	(x)	=	1/(x2	−	1)	<	M	.	Taking	the	limit	of	xn	=	(1	+	xn−1	)/2	as	n	→	∞,	we	see	that	x	=	(1	+	x)/2,	i.e.,	x	=	1.	We	may	suppose	that	r	6=	∞.	Hence	by	Cantor’s
Theorem,	S	=	Sg.	But	f	and	g	differ	at	at	most	finitely	many	points	in	[−π,	π].	b)	L(f,	P	)	=	0.5f	(0.5)	+	0.5f	(1)	+	f	(2)	=	11/8.	In	particular,	f	is	increasing	on	2	[0,	a].	Hence	Z	2	(|x	+	1|	+	|x|)	dx	=	1	·	(3	+	1)/2	+	1	+	2	·	(5	+	1)/2	=	9.	7.1.8.	Choose	N	so	large	that	[a,	b]	⊂	[−N,	N	].	On	the	other	hand,	since	ap0	∈	Ep0	,	it	is	also	the	case	that	A(p0	)	≥	ap0	.
s	=	∞.	a)	Ωf	(t	−	h,	t	+	h)	=	1	so	ωf	(t)	=	1	for	all	t.	Also	notice,	since	a	point	of	E	can	belong	to	at	most	two	intervals	of	the	form	[xj−1	,	xj	],	that	the	number	of	points	in	A	is	at	most	2m.	In	particular,	{Vα	}α∈A0	covers	H	and	H	is	compact.	We	conclude	by	Stokes’s	Theorem	that	ZZ	Z	2π	F	·	n	dσ	=	−	S	√	√	(sin3	t	cos	t/4	+	sin2	t	cos2	t/(2	2))	dt	=	−π/(8
2).	Since	z	=	f	(x,	y)	has	a	tangent	plane	at	(x0	,	y0	,	z0	)	by	Theorem	11.22,	it	follows	that	S	has	a	tangent	plane	at	(x0	,	y0	,	z0	).	Since	a	>	b,	it	follows	that	Z	Z	π	π	b(a	+	b	cos	v)	du	dv	=	4π	2	ab.	4.2	Differentiability	Theorems.	x	=	0.	Since	1/	inf	k≥n	xk	≥	1/xj	implies	1/	inf	k≥n	xk	≥	supj≥n	(1/xj	),	it	is	clear	that	1/s	≥	lim	supn→∞	(1/xn	).	Let	{x0	,	x1	,	.
Then	on	(0,	1)	\	{j/N	:	j	=	1,	.	b)	Repeat	the	argument	in	part	a),	but	this	time,	f	(−x	+	h)	=	f	(x	−	h)	and	f	(−x)	=	f	(x).	Hence	c	is	a	root	of	f	0	.	10.5.6.	For	each	x	∈	X,	f	is	constant	on	Bx	.	b)	Let	A	=	{(x,	y)	:	y	=	0}	and	B	=	{(x,	y)	:	y	=	1/x}.	d)	We	claim	that	3n2	+	3n	+	1	≤	2	·	3n	for	n	=	3,	4,	.	Since	k=1	|Rk	|	<	²,	it	follows	that	E	is	of	measure	zero.
Thus	the	formula	holds	when	x	=	0.	Suppose	f	−1	(x)	=	f	−1	(y)	for	some	x,	y	∈	B0	.	Then	U	=	A	and	V	=	E	\	A	are	nonempty	relatively	open	subsets	of	E,	U	∩	V	=	∅,	and	E	=	U	∪	V	.	δ)	Since	f	0	(x)	p	=	2x	+	2	<	0	for	x	<	−6,	f	is	1–1	on	[−∞,	−6].	If	xk	∈	f	−1	(E)	∩	B	and	xk	→	a,	then	xk	∈	B	and	f	(xk	)	∈	E.	14.1.5.	a)	Since	fN	(x)	−	f	(x)	→	0	uniformly	on
[−π,	π],	it	follows	from	Theorem	7.10	that	|ak	(fN	)	−	ak	(f	)|	≤	1	π	Z	π	|fN	(t)	−	f	(t)|	|	cos	kt|	dt	≤	−π	1	π	Z	π	|fN	(t)	−	f	(t)|	dt	−π	converges	to	zero	as	N	→	∞.	13.4.2.	a)	Use	the	trivial	parameterization	φ(u,	v)	=	(u,	v,	u2	+	v	2	),	E	=	B1	(0,	0).	3.2.0.	a)	False.	For	example,	f	(x)	=	x	for	x	<	0	and	=	1	−	x	for	x	>	0	is	1–1	on	[−1,	0)	∪	(0,	1]	but	increases	on
the	left	half	interval	and	decreases	on	the	right	half	interval.	Since	1−cos2	(2x)	=	(1−cos(2x))(1+	cos(2x)),	it	follows	that	2	sin2	x	+	2x	−	2x	cos2	x	x+1	1	1	=	→	=	1	−	cos2	(2x)	1	+	cos(2x)	1	+	cos	0	2	as	x	→	0.	Given	²	>	0	choose	δ	>	0	such	that	x,	y	∈	[a,	b]	and	|x	−	y|	<	δ	imply	|f	(x)	−	f	(y)|	<	²/(2(b	−	a)).	k=0	Since	N	is	fixed,	it	follows	that	lim	sup	|
r→1−	∞	X	ak	rk	−	L|	≤	².	By	part	a),	there	is	a	δ	>	0	such	that	|²x−y	(x)|	<	²	·	kx	−	yk	for	all	x,	y	∈	R	which	satisfy	kx	−	yk	<	δ.	Since	k	ak	=	1/3	if	k	is	odd	and	1/5	if	k	is	even,	the	radius	of	convergence	of	this	series	is	R	=	3.	11.2.7.	Clearly,	f	is	continuous	and	has	first-order	partial	derivatives	at	every	point	(x,	y)	6=	(0,	0).	Repeating	this	argument
using	lower	sums	and	lower	integrals,	we	obtain	(L)	a	g(x)	dx	≥	a	f	(x)	dx.	Consider	the	quotient	g/f	.	ak	bk	for	n	∈	N.	e)	The	maximum	of	1/k	for	k	∈	N	is	1	and	the	minimum	of	−k	for	k	∈	N	is	−∞.	n→∞	m→∞	If	x	<	0	then	since	2n	−	1	is	odd,	we	have	by	the	previous	case	that	x1/(2n−1)	=	−(−x)1/(2n−1)	→	−1	as	n	→	∞.	24	Copyright	©	2010	Pearson
Education,	Inc.	When	p	=	log2	(e),	we	compare	the	series	with	k.	,	n	+	1},	so	ψ	◦	φ	takes	{1,	2,	.	In	view	of	(2),	this	happens	if	and	only	if	|	cos	θ|	=	1,	i.e.,	if	and	only	if	θ	is	0	or	π,	On	the	other	hand,	a	and	b	are	orthogonal	if	and	only	if	a	·	b	=	0.	If	{1/(nx)}	were	uniformly	convergent,	then	there	is	an	N	∈	N	such	that	|1/(N	x)|	≤	1	for	all	x	∈	(0,	1).	By
the	Chain	Rule,	0	=	Fx	(a,	b)	+	Fy	(a,	b)(dy/dx),	hence	dy/dx	=	−Fx	(a,	b)/Fy	(a,	b).	12.3	Iterated	Integrals.	Then	w(x,	t)	≥	−²	−	rt1	=	−`/2	for	every	(x,	t)	∈	H	\	K,	i.e.,	is	greater	than	the	value	of	w	at	(x1	,	t1	).	Therefore,	ν	00	(s)	is	orthogonal	to	ν	0	(s)	for	all	s	∈	[0,	L].	Therefore,	we	can	set	M	=	0.75	and	²0	=	0.65364.	c)	Since	(1	−	cos(1/x))0	=	−
sin(1/x)/x2	<	0	for	x	≥	1,	1	−	cos(1/k)	is	decreasing.	By	Theorem	9.8,	then,	f	−1	(E)	∩	B	is	closed.	Hence	V	(E1	;	G)	≤	V	(E2	,	G)	for	every	grid	G.	P∞a)	k=1	1/(k(k	+	1))	=	P	∞	b)	k=1	12/(k	+	2)(k	+	3)	=	−3	k=1	(2k/(k	+	2)	−	(2k	+	2)/(k	+	3))	=	−3(2/3	−	2)	=	4.	Since	|f	(u)|	≥	c	>	0	for	all	u	∈	[a,	b],	we	have	by	rationalizing	the	numerator	that	p	p	p	p	p	p
|(	f	(x)	−	f	(y))(	f	(x)	+	f	(y))|	|f	(x)	−	f	(y)|	√	√	|	f	(x)	−	f	(y)|	≤	=	.	P∞	∞	∞	k+1	d)	k=0	(5	+	(−3)k	)/7k+2	=	(5	k=0	(5/7)k	+	k=0	(−3/7)k	)/72	=	(5/2	+	1/10)/7	=	13/35.	Therefore	V	=	∪j=1	Bj	as	required.	11.6.10.	Similarly,	(m/n)(n/m)	=	(mn)/(mn)	=	mn(mn)−1	=	1,	so	(m/n)−1	=	n/m	by	the	uniqueness	of	multiplicative	inverses.	Choose	n0	∈	N	so	that	1	−
bn0	≤	²/(2M	)	and	N	>	n0	so	large	that	|fn	(x)	−	f	(x)|	<	²/2	for	n	≥	N	and	x	∈	[0,	1].	x→1	x	−	1	x→1	lim	c)	By	Theorem	3.8,	the	limit	is	0/	cos	0	=	0/1	=	0.	Indeed,	let	ε	>	0	and	choose	δ	>	0	such	that	|x	−	a|	<	δ	implies	|f	(x)	−	L|	<	ε.	If	¯∞	R∞	p	=	1	then	0	dx/(1	+	x)	=	log(1	+	x)	¯0	which	diverges.	Thus	the	Taylor	series	contains	only	even	terms.	Thus	g
◦	f	is	almost	everywhere	continuous,	i.e.,	g	◦	f	is	integrable	by	Lebesgue’s	Theorem.	Since	F	is	C	1	and	Ft	(x0	,	t0	)	=	u0	(t0	)	6=	0,	it	follows	from	the	Implicit	Function	Theorem	that	there	is	an	open	interval	I0	containing	x0	and	a	C	1	function	g	:	I0	→	R	such	that	g(x0	)	=	t0	and	0	=	F	(x,	g(x))	=	u(g(x))	−	x	for	all	x	∈	I0	.	Suppose	that	xn−1	≥	3	for
some	√	n	≥	1.	√	√	√	b)	By	the	Power	and	Chain	Rules,	g	0	(x)	=	2f	(	x)	·	f	0	(	x)/(2	x),	so	g	0	(4)	=	2f	(2)	·	f	0	(2)/(2	4)	=	π.	1.4.4.	a)	The	formula	holds	for	n	=	1.	Homogeneity	and	positive	definiteness	are	obvious.	Thus	ak	(f	(x	+	h)	−	f	(x	−	h))	=	2bk	(f	)	sin	kh	for	k	∈	N.	Suppose	xn−1	<	1.	6.2.4.	Since	logp	(k	+	1)	≥	logp	k,	we	have	∞	X	∞	X	1	1	≤	.
Therefore,	the	original	limit	is	e1/6	.	3.1.1.	a)	Let	ε	>	0	and	set	δ	:=	min{1,	ε/7}.	,	xn	)·(y1	+z1	,	.	Thus	f	(x)g(x)	¯0	=	0	−	0	=	0.	Let	t0	=	sup{t	∈	(0,	1)	:	(1	−	t)x	+	ty	∈	U	}	and	set	x0	=	(1	−	t0	)x	+	t0	y.	Since	k=1	k	=	n(n	+	1)/2,	it	follows	that	an	equation	of	this	plane	is	x1	+	·	·	·	+	xn	=	n(n	+	1)/2.	C	a	a	Since	C	is	closed,	this	last	difference	is	zero.	If	f
is	also	analytic,	then	by	analytic	continuation	(Theorem	7.56),	f	(x)	=	0	for	all	x	∈	(−∞,	∞).	5.5.1.	a)	Fix	k	∈	N.	Then,	Z	Z	Z	Z	F	·	T	ds	=	F	·	T	ds	+	F	·	T	ds	+	F	·	T	ds	∂S	Z	C1	0	=	C2	C3	1	Z	(t,	−t,	0)	·	(0,	−1,	2)	dt	+	−1/2	Z	(t,	−t,	t	−	2t2	+	t3	)	·	(1,	0,	−1)	dt	0	0	+	((−3t	−	1)/2,	(3t	+	1)/2,	0)	·	(−1,	1/2,	0)	dt	=	−	−1	1	.	In	particular,	y	∈	f	(A)	\	f	(B).	p	p	b)	If
k=1	k	p	ak	converges	for	some	p	>	1,	then	k	p	ak	→	0	as	k	→	∞,	P∞i.e.,	k	|ak	|	<	1	for	large	k.	Then	f	and	g	are	uniformly	continuous	on	R	but	(f	g)(x)	=	x2	is	not	(see	Example	3.36).	2	2,	the	limit	is	3.	Then	by	the	Second	Multiplicative	Property,	x	>	x	−	1	so	0	>	−1,	i.e.,	every	number	from	this	case	works.	P∞	P∞	6.2.0.	a)	False.	6.6.4.	Since	the	range	of
f	is	positive,	|f	(k)|	=	f	(k)	for	all	k	∈	N.	Using	the	parame√	terization	φ(t)	=	(	10	sin	t,	10	cos	t,	0),	t	∈	[0,	2π],	we	have	by	Stokes’s	Theorem	that	ZZ	Z	2π	curl	F	·	n	dσ	=	S	√	√	√	√	(	10	sin	t,	10	sin	t,	mess)	·	(	10	cos	t,	−	10	sin	t,	0)	dt	0	Z	=	2π	(10	sin	t	cos	t	−	10	sin2	t)	dt	=	−10π.	Then	by	Green’s	Theorem,	Z	ZZ	F	·	T	ds	=	(Qx	−	Py	)	dA	=	0.	Thus	U	(f,	Pn
)	−	L(f,	Pn	)	=	n	X	(xj	−	xj−1	)(xj	−	xj−1	)	=	j=1	n	1	X	1	1=	→0	n2	j=1	n	as	n	→	∞,	so	f	is	integrable	by	Definition	5.9.	Since	U	(f,	Pn	)	=	n	1	X	n(n	+	1)	1	k=	→	n2	2n2	2	k=1	R1	as	n	→	∞,	0	x	dx	=	1/2.	Taking	the	limit	of	this	inequality	as	n	→	∞	and	as	²	→	0,	we	obtain	lim	sup(xn	yn	)	≥	x	lim	sup	yn	.	Since	[0,	1]	is	uncountable,	it	follows	from	1.6.0c	that
E1	×	E2	×	·	·	·	is	uncountable.	∂h/∂xn	(a)	]	=	∇f	(g(a))	ë	û.	In	particular,	xn	=	2xn−1	yn−1	>	yn−1	.	On	the	other	hand,	by	part	b),	I2	≤	M	(s	−	a)/eδ(s−a−1)	→R0	as	s	→	∞.	0	c)	Let	u	=	f	(x)	and	dv	=	g	0	(x)	dx.	Consider	the	function	f	(x)	=	k=1	(bk	/2)/2k	.	But	x1	>	3	and	induction	+	3	−	2	=	3,	so	the	limit	must	be	x	=	3.	To	find	its	x-intercept,	set	y	=	0.
Since	yn	→	∞	implies	yn	>	0	for	n	large,	we	can	apply	Theorem	2.15	directly	to	obtain	the	conclusions	when	α	>	0.	6.3.1.	a)p	Since	[1/(k	+	1)!]/[1/k!]	=	1/(k	+	1)	→	0	as	k	→	∞,	this	series	converges	by	the	Ratio	Test.	The	lower	one	is	closer	because	y	=	x3	is	concave	up	on	[0,	2],	hence	closer	to	the	lower	sum	approximation	than	the	upper	sum
approximation.	b)	By	hypothesis,	2	<	x1	<	3.	It	diverges	for	p	≤	0	by	the	Divergence	Test.	c)	Since	F	=	∇f	,	we	have	∇(f	F	)	=	∇f	·	F	+	f	·	∇F	=	F	·	F	+	f	·	∇	·	∇f	by	Exercise	13.5.8.	But	∇	·	∇f	=	fxx	+	fyy	+	fzz	=	0	by	hypothesis.	Since	g	is	nonnegative,	we	have	f	(x)	>	M	g(x)	for	x	∈	(b0	,	b).	By	Exercise	10.1.2	(with	a	=	0),	this	is	equivalent	to	{xk	}	is
bounded	in	Rn	.	Each	polynomial	of	degree	n	has	at	most	n	roots.	Hence	it	follows	from	the	Extreme	Value	Theorem	that	|f	|	is	bounded	on	[a,	b],	i.e.,	supx∈[a,b]	|f	(x)|	is	finite.	∂x	∂y	Thus	ZZ	ZZ	curl	F	·	n	dσ	=	curl	F	·	n	dσ	=	0.	1.6.6.	a)	We	prove	this	result	by	induction	on	n.	Since	the	bn	’s	are	increasing,	bn	≤	1	for	all	n	∈	N	and	n	≥	n0	imply	that	1	−
bn	≤	1	−	bn0	.	7.1.1.	a)	Given	²	>	0	choose	N	so	large	that	N	>	max{|a|,	|b|}/².	Since	g	is	increasing	on	[a,	b],	g	0	(x)	≥	0	for	all	x	∈	[a,	b].	12	Copyright	©	2010	Pearson	Education,	Inc.	Moreover,	xn	=	2	+	xn−1	−	2	≥	2	+	1	=	3.	11.6	The	Inverse	Function	Theorem.	R	2n	P2n	−1	b)	Clearly,	1	(1/t)	dt	>	k=1	1/(k	+	1)	>	n/2	for	n	≥	1.	0	k	k	k	k	k	0	0	k=1
k=1	k=1	R1	1/k	2	≤	1	+	k=2	1/(k(k	−	1))	=	2.	0	0	On	the	other	hand,	using	trivial	parameterizations,	we	have	ZZ	Z	1	Z	S4	Z	1−u	ω=	1	Z	1−u	P	(1	−	u	−	v,	u,	v)	dv	du	+	0	0	Z	1	Q(u,	1	−	u	−	v,	v)	dv	du	0	Z	0	1−v	+	R(u,	v,	1	−	u	−	v)	du	dv.	9.4.4.	Suppose	f	is	continuous	on	B,	and	that	E	is	a	closed	subset	of	Rm	.	Hence,	allow	no	more	than	an	error	of
3%.	10.3.7.	a)	If	A	=	(0,	1)	and	B	=	[1,	2]	then	(A	∪	B)o	=	(0,	2)	but	Ao	∪	B	o	=	(0,	1)	∪	(1,	2)	6=	(0,	2).	c)	0	=	fx	=	3x2	+	3y	and	0	=	fy	=	3x	−	3y	2	imply	y	=	0	or	y	=	−1,	which	correspond	to	the	points	(0,	0)	and	(1,	−1).	k=1	yk2	−	2a	k=1	n	X	xk	yk	−	2b	k=1	it	is	clear	that	Fa	=	−2	n	X	Fb	=	−2	yk	+	k=1	xk	yk	+	2a	k=1	and	n	X	n	X	yk	+	2a	xk2	+	2b
k=1	n	X	(axk	+	b)2	,	k=1	k=1	n	X	n	X	n	X	xk	,	k=1	xk	+	2nb.	f,x0	4.4.8.	The	Taylor	polynomials	P	=	Pn−1	at	x0	=	a	and	x0	=	b	are	zero.	x0	≥	1.	Thus	æ	ö1/2	n	n	X	X	a2	a	2	2	2	≤	|xj	|	≤	a	hence	≤è	|xj	|	ø	≤a	n(2−p)/p	n(2−p)/(2p)	j=1	j=1	for	all	1	≤	p	≤P	2.	On	the	other	hand,	since	n0	∈	E	and	b	−	a	>	1,	k	=	n0	+	1	≤	a	+	1	<	a	+	(b	−	a)	=	b.	Let	s	=	lim	inf
n→∞	xn	.	If	x	∈	E	and	n	≥	max{N0	,	N	}	then	¯	¯	µ	¶	N0	N	¯1	X	¯	1X	²	N0	²	²	¯	¯	fk	(x)	−	f	(x)¯	≤	|fk	(x)	−	f	(x)|	+	1−	<	+	=	².	10.4.1.	a)	Since	1/k	→	0	as	k	→	∞,	this	set	is	closed	and	bounded,	hence	compact.	1.6.3.	Let	g	be	a	function	that	takes	A	onto	B.	Hence	x	∈	(A	∩	∂B)	∪	(B	∩	∂A)	∪	(∂A	∩	∂B).	11.6.3.	Let	F	(x,	y,	u,	v,	w)	=	(u5	+	xv	2	−	y	+	w,	v	5	+
yu2	−	x	+	w,	w4	+	y	5	−	x4	−	1)	and	observe	that	F	(1,	1,	1,	1,	−1)	=	(0,	0,	0).	k	π	|	cos	ku|	du	≤	ω(f,	−π	π	).	n→∞	0	Since	these	two	limits	are	equal,	it	follows	that	Z	1	Z	(L)	f	(x)	dx	=	(U	)	0	1	f	(x)	dx	=	lim	U	(f,	Pn	)	:=	I.	f)	k	≥	3	implies	log	k	≥	P	log	3	>	log	e	=	1,	so	log	k	≥	p	:=	log	3.	11.5.8.	Let	x	∈	H.	π	−π	k	π	−π	k	Thus	ak	(f	)	=	ak	(f	)	+	ak	(f	)	1	=	2
2π	b)	By	part	a),	|ak	(f	)|	≤	ω(f,	π	1	)	k	2π	Z	π	(f	(u)	−	f	(u	+	−π	Z	π	))	cos	ku	du.	0	Similarly,	ZZ	Z	0	Z	1	ω=−	(R(1	−	z,	0,	z)	−	R(0,	0,	z))	dz	0	ZZ	Z	ω=−	0	Z	1	(Q(1	−	y,	y,	0)	−	Q(0,	y,	0))	dy	+	T3	1	(P	(x,	0,	1	−	x)	−	P	(x,	0,	0))	dx	+	T2	and	1	(R(0,	1	−	z,	z)	−	R(0,	0,	z))	dz	+	0	1	(P	(x,	1	−	x,	0)	−	P	(x,	0,	0))	dx.	11.4.9.	Let	y	=	f	(x)	and	take	the	derivative	of
F	(x,	f	(x))	=	0	with	respect	to	x.	j=1	In	particular,	f	is	integrable	on	[a,	b].	The	upper	one	is	closer	because	y	=	3−x2	is	concave	down	on	[0,	2],	hence	closer	to	the	upper	sum	approximation	than	the	lower	sum	approximation.	These	lines	are	not	parallel	because	their	“direction	vectors”	(1,	1,	0)	and	(3,	4,	1)	are	not	parallel.	Since	[a,	b]	⊂	(−1,	1)
implies	r	<	1	and	the	∞	k	geometric	series	k=0	r	converges,	it	follows	from	the	Weierstrass	M–Test	that	the	original	series	converges	uniformly	on	[a,	b].	If	a	∈	U	,	then	by	Theorem	9.7,	xk	∈	V	for	large	k.	Moreover,	since	x	∈	[a,	b]	implies	|x|k	/k!	≤	ck	/k!,	where	c	:=	max{|a|,	|b|},	it	follows	from	the	Weierstrass	M–Test	that	the	original	series
converges	uniformly	on	[a,	b].	Let	curl	(P,	Q,	R)	=	(x,	−y,	sin	y).	Hence	Z	1	F	·	T	ds	=	√	2	C	Z	2π	0	√	−π	2	(cos	t	−	sin	t)	dt	=	.	b)	Let	x,	a	∈	(0,	∞)	and	q	=	n/m.	On	√	G(a,√	the	other	hand,	since	0	≤	a	≤	b	√	we	have	A(a,	b)	=	(a	+	b)/2	≤	2b/2	=	b	and	G(a,	b)	=	ab	≥	a2	=	a.	Since	E	∩	f	−1	(A)	=	E	\	A0	=	E	∩	V	c	and	V	c	is	closed,	it	follows	that	f	−1	(A)	∩	E
is	relatively	closed	in	E.	9.4.3.	Recall	that	f	−1	(V	)	is	relatively	open	in	A	if	and	only	if	f	−1	(E)	=	O	∩	A	for	some	open	O	in	Rn	.	n	m	b)	Fix	x	∈	R.	Hence	by	the	Approximation	Property	for	Suprema,	choose	xk	∈	E	such	that	f	(xk	)	→	M	.	Therefore,	∂/∂y(	∞	π	100	Copyright	©	2010	Pearson	Education,	Inc.	c)	If	Vol	(E)	>	0	then	Vol	(E	0	)	>	0	by	part	b),
hence	E	0	cannot	be	empty.	Thus	the	point	(x,	y,	z)	is	a	saddle	point	and	ax	+	by	+	cz	has	no	extrema	subject	to	the	constraint	z	=	Dx2	+	Ey	2	.	0	≤	x	<	∞.	A	similar	argument	proves	that	if	f	−1	(A)	∩	E	is	relatively	closed	in	E	for	all	closed	sets	A	in	Y	,	then	f	is	continuous	on	E.	Then	C	is	piecewise	smooth	and	closed	and	it	follows	from	hypothesis	that
Z	Z	Z	Z	Z	0=	F	·	T	ds	=	F	·	T	ds	−	F	·	T	ds,	i.e.,	F	·	T	ds	=	F	·	T	ds.	Given	²	>	0	choose	by	the	Approximation	Property	an	x0	∈	(a,	b)	such	that	L	−	²	<	f	(x0	).	Hence	by	the	Squeeze	Theorem,	s2n+1	−	s2n	→	0	as	n	→	∞.	Notice	for	any	a,	b,	c	∈	R	that	é	a	∂(y,	z)	∂(z,	x)	∂(x,	y)	a	+b	+c	=	det	ë	xu	∂(u,	v)	∂(u,	v)	∂(u,	v)	xv	b	yu	yv	ù	c	zu	û	zv	and	by	the	Chain	Rule
that	(φ	◦	ψ)0	=	(xu	ut	+	xv	vt	,	yu	ut	+	yv	vt	,	zu	ut	+	zv	vt	).	If	C	=	{φj	,	[aj	,	bj	]}	is	piecewise	smooth,	then	the	integral	over	C	breaks	into	a	finite	sum	of	smooth	pieces.	,	n}.	b)	Since	log((log	k)p	log	k	)/	log	k	=	p	log	log	k	→	∞	if	p	>	0,	this	series	converges	absolutely	for	all	p	>	0	by	the	Logarithmic	Test.	b)	If	DE	<	0	then	by	part	a),	the	discriminant	is
negative.	u→0+	(1	−	u2	)/u	u→0+	1	+	u2	−	log	u	√	√	√	√	2	2	2	Thus	√	|	log	u|	u/	1	−	u	=	−	log	u/	1	−	u	is	bounded	on	[0,	sin	1],	i.e.,	there	is	an	M	>	0	such	that	|	log	u|/	1	−	u	≤	1/	u.	Suppose	distinct	points	x1	,	.	Let	a	=	2/3,	b	=	1,	c	=	−2,	and	d	=	−1.	Hence	let	m0	be	the	least	element	in	E	and	set	q	=	(m0	−	1)/2n	.	2	2	2	2	2	2	2	2	c)	By	Theorem	8.9
and	Cauchy-Schwarz,	p	|a·(b×c)|	=	|(a×b)·c|	≤	ka×bk	kck	=	(kak	kbk	−(a·b)	)	kck	≤	2	2	2	2	2	(1	−	|a	·	b|	)	kck	≤	1	−	|a	·	b|	.	Recall	that	|	sin(k	3	)|	≤	1	for	all	k	∈	N.	By	Gauss’	Theorem,	ZZ	ZZZ	F	·	n	dσ	=	S	Z	π/2	(|x|	+	|y|	+	|z|)	dV	E	Z	Z	π/2	1	=8	0	0	π/2	Z	(aρ	cos	θ	sin	ϕ	+	bρ	sin	θ	sin	ϕ	+	cρ	cos	ϕ)abcρ2	sin	ϕ	dρ	dϕ	dθ	0	π/2	Z	=	2abc	(a	cos	θ	sin	ϕ	+	b
sin	θ	sin	ϕ	+	c	cos	ϕ)	sin	ϕ	dϕ	dθ	0	Z	0	π/2	³	=	2abc	´	cπ	cos	ϕ	sin	ϕ	dϕ	=	πabc(a	+	b	+	c)/2.	Similarly,	for	each	j	≥	n,	inf	(xk	+	yk	)	≤	xj	+	yj	≤	sup	xk	+	yj	.	x	y	(x,y)→(0,1)	4	c)	The	domain	of	f	is	all	(x,	y)	∈	R2	such	that	(x,	y)	6=	(0,	0).	ak	am	an	a−1	k=n	Thus	|xm+1	−	xn	|	≤	(1/an	−	1/am	)/(a	−	1)	→	0	as	n,	m	→	∞	since	a	>	1.	,	x2n+1	}	of	[a,	b]	such	that
each	x	∈	E	belongs	to	[x2k	,	x2k+1	]	for	some	0	≤	k	≤	n,	and	n	X	²	|x2k	−	x2k+1	|	=	.	By	Definition	10.13,	there	is	a	b	∈	X	and	an	M	>	0	such	that	xn	∈	BM	(b),	i.e.,	ρ(xn	,	b)	<	M	for	all	n	∈	N.	Thus	ψ	is	1–1	from	Z	onto	B.	e)	Since	sin(1/x2	)	is	dominated	by	1	and	tan	x	→	0	as	x	→	0,	it	follows	from	Theorem	3.9	that	this	limit	is	zero.	a)	Notice	x0	>	y0	>	1.



Since	Py	=	0	implies	P	=	h(x,	z),	we	have	Pz	=	hz	and	Rx	=	gx	.	2	S	B1	(0,0)	0	0	b)	Let	φ(u,	v)	=	(u,	2	cos	v,	2	sin	v),	E	=	[0,	1]×[0,	π].	Thus	L(2n	)	→	∞	as	n	→	∞.	n→∞	n→∞	52	Copyright	©	2010	Pearson	Education,	Inc.	6.2.3.	Let	M	≥	ak	and	note	that	1/(k	+	1)p	≤	1/k	p	for	all	k	∈	N.	If	(an	+	bn	)−1	converged	to	0,	then	given	any	M	∈	R,	M	6=	0,	there	is
an	N	∈	N	such	that	n	≥	N	implies	|an	+	bn	|−1	<	1/|M	|.	P∞	b)	By	Example	6.32,	k=1	sin(kx)	has	bounded	partial	sums	for	all	x	∈	R.	Then	²0	/M	=	0.8636912,	r0	=	.15	and	r	=	0.1736732.	√	√	c)	Let	xn	be	irrational	which	satisfy	xn	↓	2.	P∞a)	k=1	P	∞	2	k	b)	P	k=0	(−1)k−1	/π	2k	=	−	)	=	−1/(1	+	1/π	2	)	=	−π	2	/(π	2	+	1).	,	yn	)	=	(x1	+	y1	,	.	Let	E	:=	{Uα
}α∈A	be	a	relatively	open	covering	of	H.	A	similar	argument	shows	f	(x0	)	<	0	is	also	impossible.	Then	f	(x)	+	g(x)	=	1	and	f	(x)g(x)	=	0	for	all	x	∈	R.	dρ	dρ	11.4.4.	By	the	Chain	Rule,	ux	=	yf	0	(xy)	and	uy	=	xf	0	(xy).	c)	Since	|x|	and	|y|	are	≤	x2	+	y	2	,	|f	(x,	y)|	≤	2(x2	+	y	2	)1/2−α	.	4.4.6.	a)	Let	f	(x)	=	log	x/xα	.	1.4.0.	a)	False.	Then	f	0	(x)	=	cos	x	>	0	for
x	∈	(−π/2,	π/2)	and	f	(−π/2,	π/2)	=	(−1,	1).	Thus	by	definition,	ax	is	continuous	on	R	when	a	>	1.	Hence	by	Bernoulli’s	Inequality,	(1	+	x/k)k/(k+1)	≤	1	+	x/(k	+	1)	for	all	x	≥	−1.	13.2.2.	a)	Let	φ(t)	=	(t,	t2	)	and	I	=	[1,	3].	Since	F	(0,	0,	0)	=	0	and	∂F	=	xy	+	cos(x	+	y	+	z)	∂z	equals	1	6=	0	at	(0,	0,	0),	the	expression	phas	a	differentiable	solution	near	(0,	0,
0)	by	the	Implicit	Function	Theorem.	Since	g	is	continuous	on	[a,	b],	it	follows	from	the	Intermediate	Value	Theorem	that	there	is	a	c	∈	[a,	b]	such	that	g(c)	=	0,	i.e.,	such	that	f	(c)	=	c.	graph	is	a√straight	√	line	from	(b,	f	(b))	to	(a	+	2π,	f	(a))	and	it	is	extended	by	periodicity	to	all	of	R.	Since	p	kNφ	k	=	|	cos	v|	a2	b2	sin2	v	+	a2	c2	sin2	u	cos2	v	+	b2	c2
cos2	u	cos2	v	is	nonzero	when	v	6=	0	and	v	6=	2π,	this	gives	a	smooth	C	∞	parameterization	of	the	ellipse	except	at	the	north	and	south	poles,	i.e.,	the	points	(0,	0,	c)	and	(0,	0,	−c).	If	you	want	a	more	constructive	proof,	if	b	≤	0	then	a	<	b	−	ε	<	0	+	0	=	0.	10.2.5.	Modify	the	proofs	of	Remark	3.4,	Theorems	3.6,	3.8,	3.9,	and	3.10,	replacing	the
absolute	value	signs	with	the	metric	ρ.	Pn	Pn−1	Pn	6.4.6.	By	Abel’s	Formula,	k=m	ak	bk	=	Bn,m	an	−	k=m	Bk,m	(ak+1	−	ak	)	where	Bn,m	:=	k=m	bk	.	2	11.6.6.	a)	Notice	√	that	s	=	x	+	y,	t	=	xy,	and	√	(x,	y)	∈	E	imply	s	>	0,	t	>	0,	x	=	s	−	y,	and	t	=	sy	−	y	.	x→1	x→1	x(x	−	1)(x	+	1)	x→1	x(x	+	1)	x3	−	x	2	lim	b)	By	Remark	3.4	and	Theorem	3.8,	xn	−	1	=
lim	xn−1	+	·	·	·	+	x	+	1	=	1	+	·	·	·	+	1	+	1	=	n.	Similarly,	B	is	a	closed	set	containing	A,	hence	A	⊆	B.	c)	If	A	and	B	are	as	in	part	a),	then	∂(A	∪	B)	=	{0,	2}	6=	{0,	1,	2}	=	∂A	∪	∂B	and	∂(A	∩	B)	=	∅	6=	{0,	1,	2}	=	∂A	∪	∂B.	This	proves	i)	(αx)	×	y	=	(αx2	y3	−	αx3	y2	,	αx3	y1	−	αx1	y3	,	αx1	y2	−	αx2	y1	)	=	α(x	×	y)	=	(x2	(αy3	)	−	x3	(αy2	),	x3	(αy1	)	−	x1
(αy3	),	x1	(αy2	)	−	x2	(αy1	))	=	x	×	(αy),	so	ii)	holds.	7.1.7.	Let	ε	>	0	and	choose	δ	such	that	|x	−	y|	<	δ	implies	|f	(x)	−	f	(y)|	<	ε.	3	3.4.2.	a)	By	L’Hˆopital’s	Rule,	sin	x/x	→	1	as	x	→	0.	9.1.6.	a)	Let	xk	∈	E	converge	to	some	point	a.	We	conclude	by	part	a)	that	ah	−	1	1	=	lim	=	1.	11.3.6.	a)	By	modifying	the	proof	of	Lemma	3.28,	we	can	prove	that	if	f	(a)
6=	0,	then	|f	(a	+	h)|	>	|f	(a)|/2	>	0	for	h	small.	,	h,	.	Hence	x	=	y.	Hence	by	part	a),	E(q)	=	E(1	·	q)	=	(E(1))q	=	eq	for	all	q	∈	Q.	Thus	the	function	defined	by	g(x)	=	f	(x),	x	∈	(a,	b),	g(a)	=	f	(a+)	and	g(b)	=	f	(b−)	is	continuous	on	[a,	b].	In	particular,	k	≥	N	implies	∞	|ak	rk	|	≥	|ak−1	rk−1	|	≥	·	·	·	≥	|aN	rN	|	>	0.	Then	xn	=	2	for	all	n,	so	the	limit	is	2.	b)	(0,
1)	is	bounded	and	1/n	∈	(0,	1)	has	no	convergent	subsequence	with	limit	in	(0,	1).	Thus	the	solution	is	(−∞,	1).	.	Thus	G	has	a	tangent	plane	at	(a,	b,	c)	by	Theorem	11.22.	Thus	|an	+bn	|	→	|x|,	NOT	∞.	b)	There	is	an	N	∈	N	such	that	n,	m	≥	N	implies	|xn	−	xm	|	and	|yn	−	ym	|	are	<	ε/2.	To	examine	the	case	when	(x,	y)	=	(0,	0),	notice	first	that	fx	(0,	0)	=
limh→0	(f	(h,	0)	−	f	(0,	0))/h	=	limh→0	0	=	0.	x	−	αn	βn	−	αn	b)	Let	γ	=	f	0	(x).	2.4	Cauchy	sequences.	Moreover,	by	the	Comparison	Theorem,	xn	∈	E	implies	x0	∈	E.	Moreover,	adding	the	two	given	identities,	we	have	x(u2	+	v	2	)	+	y(u2	+	v	2	)	=	9	+	7,	i.e.,	(x	+	y)(u2	+	v	2	)	=	16.	0	11.6.2.	a)	Set	F	(x,	y,	z)	=	xyz	+	sin(x	+	y	+	z).	c)	For	x	≥	R	∞1,
sin(1/x)	=	|	sin(1/x)|	R	∞≤	1/x.	h	Similarly,	fy	(0,	0)	=	0.	xk	→	sup	E.	thus	by	the	Comparison	Theorem,	k=1	ak	converges.	2.5.3.	a)	Since	limn→∞	(supk≥n	xk	)	<	r,	there	is	an	N	∈	N	such	that	supk≥N	xk	<	r,	i.e.,	xk	<	r	for	all	k	≥	N	.	0	0	0	13.6.9.	The	proof	that	i)	implies	ii)	and	ii)	implies	iii)	is	similar	to	the	proof	of	Theorem	13.61.	9.3	Limits	of
Functions.	If	k=1	ak	converges	absolutely,	then	|ak	|	≤	1	for	large	k.	If	−1	<	x	<	−1	+	δ,	then	−1	<	x	<	0	since	δ	≤	1.	By	the	argument	above,	Q(x,	y)	→	∞	as	x,	y	→	∞.	By	the	Approximation	Property	for	Infima,	choose	xk	∈	A	and	yk	∈	B	such	that	ρ(xk	,	yk	)	→	dist	(A,	B).	R	k+1	d)	False.	4.4.5.	a)	limx→0	sin2	(5x)/x2	=	(sin(5x)/x)2	=	(limx→0	5	cos(5x)/1)2
=	25.	c)	Since	|x|	<	1	implies	t	=	|x2	−	1|	=	1	−	x2	∈	(0,	1)	and	(−1)k+1	(−1)k	=	−1,	we	have	by	Example	7.49	log(|x2	−	1|−1	)	=	−	log(1	−	x2	)	=	−	∞	X	(−1)k+1	(−x2	)k	k=1	k	=	∞	X	x2k	k=1	k	for	|x|	<	1.	Then	2	+	sin	θ	≥	2	−	1	=	1	implies	n2	(2	+	sin(n3	+	n	+	1))	≥	n	√	·	1	>	0	≥	M	for	all	n	∈	N.	Hence,	P∞	k=1	|ak	(f	)|	converges.	Hence	f	−1	(x)	=
−1	−	6	+	x.	n→∞	k≥n	n→∞	Case	2.	Set	εn	:=	supk≥n	|f	(k	+	1)	−	f	(k)	−	L|	and	notice	by	hypothesis	that	εn	→	0	as	n	→	∞.	The	boundary	is	x2	+	y	2	=	9,	z	=	0,	and	2x2	+	2y	2	=	9,	z	=	3/	2.	a)	Let	x	∈	∂E.	On	the	other	hand,	if	m	is	not	a	perfect	square,	then	by	Remark	1.28,	m	is	irrational.	g	−1	(0,	π)	=	(0,	∞)	is	open,	no	big	deal;	g	−1	[0,	π]	=	[0,	∞)	is
closed–note	that	Exercise	10.6.3	does	not	apply	since	g	is	not	continuous;	g	−1	(−1,	1)	=	{0}	is	not	open	and	we	don’t	expect	it	to	be;	g	−1	[−1,	1]	=	R	is	closed–note	that	Exercise	10.6.3	does	not	apply	since	g	is	not	continuous.	Then	a	<	r	+	2	<	b.	Thus	either	f	is	strictly	increasing	on	(a,	b)	and	takes	(a,	b)	into	(f	(a+),	f	(b−))	or	f	is	strictly	decreasing
and	takes	(a,	b)	into	(f	(b−),	f	(a+)).	Since	all	compact	sets	are	closed,	the	limit	of	this	subsequence	must	belong	to	E.	Similar	arguments	prevail	for	all	integers	n	and	m.	p	6.2.5.	P∞	When	p	≥	0	use	the	Comparison	Test,	since	in	this	case,	k	≥	1	for	all	k	∈	N,	so	the	series	is	dominated	by	k=1	|ak	|.	By	the	Generalized	Mean	Value	Theorem,	f	(x)	f	(x)	−	f
(a)	f	0	(c)	=	=	0	g(x)	g(x)	−	g(a)	g	(c)	for	some	c	between	x	and	a.	0	RR	On	the	other	hand,	Qx	=	Py	=	(x2	−	y	2	)/(x2	+	y	2	)2	,	so	E	(Py	−	Qx	)	dA	=	0.	In	particular,	Py	=	fxy	=	fyx	=	Qx	by	Theorem	11.2.	p	√	13.2.8.	Clearly,	a	=	1,	b	=	f	(1)	−	f	(0),	and	c	=	1	+	(f	(1)	−	f	(0))2	.	By	Gauss’	Theorem,	ZZ	ZZZ	ω=	S	Z	Z	Z	4−x2	−z	2	3	dV	=	3	(4x	+	2z	−	x2	−	z
2	−	1)	d(x,	z).	Suppose	f	is	continuous	on	E	and	A	is	closed	in	Y	.	2.5.8.	It	suffices	to	establish	the	first	identity.	The	graph	of	f2	has	a	tangent	at	x	=	0	because	it	is	trapped	between	y	=	x2	and	y	=	−x2	,	hence	squeezed	flat	at	x	=	0.	By	Theorem	10.34,	E	has	no	boundary	if	and	only	if	E	\	E	o	=	∂E	=	∅,	i.e.,	if	and	only	if	E	=	E	o	.	Thus	set	h(x)	=	c.	e)	Let
(x,	y,	z)	=	φ(t).	Thus	it	is	clear	that	A(p0	)	≤	ap0	.	3.4.3.	If	α	>	0	then	|xα	sin(1/x)|	≤	xα	→	0	as	x	→	0+.	β)	f	is	1–1	since	f	0	(x)	=	−e1/x	/x2	>	0	for	x	∈	(0,	∞).	To	prove	the	reverse	inequality,	suppose	f	is	1–1	and	y	∈	f	(A	\	B).	It	remains	to	consider	the	case	x	=	∞	and	y	=	−∞.	c)	implies	d).	b)	Multiplying	top	and	bottom	by	1/x2	we	have	5x2	+	3x	−	2	5	+
3/x	−	2/x2	5	=	→	3x2	−	2x	+	1	3	−	2/x	+	1/x2	3	as	x	→	∞.	Since	h0	(θ)	=	0	implies	θ	=	0	√	or	π,	or	cos	θ	=	−2/5.	(Both	these	series	converge	uniformly	on	[a,	b]	by	the	argument	in	part	a).)	Therefore,	x2	Bn00	(x)	+	xBn0	(x)	−	n2	Bn	(x)	¶µ	¶³	´	∞	µ	X	(−1)k	(n	+	2k)	n2	x	n+2k	=	(n	+	2k	−	1)	+	1	−	k!(n	+	k)!	n	+	2k	2	k=0	µ	¶	µ	¶	∞	X	(−1)k	(n	+	2k)	4nk	+
4k	2	³	x	´n+2k	=	k!(n	+	k)!	n	+	2k	2	k=0	=	−x2	∞	X	k=1	³	x	´n+2k−2	(−1)k−1	=	−x2	Bn	(x).	14.5.1.	If	F	(x0	)	is	a	local	minimum,	then	F	(x0	+	2h)	+	F	(x0	−	2h)	−	2F	(x0	)	≥	0	for	all	h	∈	R.	3k	k	3	k	3	b)	Since	√	x	√/2	=	(x	/2)	,	this	series	is	geometric.	Then	a	=	x0	<	x1	<	·	·	·	<	xN	=	b,	and	|xk	−	xk−1	|	=	(b	−	a)/N	<	δ	by	the	choice	of	N	for	all	k.	The
upper	one	is	closer	because	y	=	sin(x/5)	is	concave	down	on	[0,	2],	hence	closer	to	the	upper	sum	approximation	than	the	lower	sum	approximation.	Since	Vα	∩	Vβ	=	∅	for	α	6=	β,	the	set	E	=	{xα	:	α	∈	A}	is	uncountable.	3.2.5.	Suppose	f	(x)	→	L	as	x	→	∞.	11.2.1.	Let	V	denote	the	open	cube	(−1,	1)	×	·	·	·	×	(−1,	1).	1.3.6.	a)	Let	²	>	0	and	m	=	inf	E.	2	2	·
4	·	·	·	(2k)	k=2	The	radius	of	convergence	is	R	=	1,	i.e.,	the	endpoints	of	the	interval	of	convergence	are	0	and	2.	Thus	Q	=	x	+	h(y,	z)	and	Qz	=	hz	=	0,	Ry	=	gy	=	2y.	b)	Any	continuous	function	f	can	be	extended	from	a	compact	subset	K	of	(0,	2π)	to	be	continuous	and	periodic	on	[0,	2π].	If	ak	=	−1/k	and	bk	=	1/k	2	,	then	ak	≤	bk	for	all	k	∈	N	and	k=1
bk	converges	absolutely,	but	Pc)	∞	k=1	ak	diverges.	The	inequality	can	be	strict	because	if	½	xn	=	1	−	yn	=	0	1	n	even	n	odd	then	lim	supn→∞	(xn	yn	)	=	0	<	1	=	(lim	supn→∞	xn	)(lim	supn→∞	yn	).	,	yM	}.	1	1	=e	−1	Z	∞	(1	+	n	+	n(n	−	1)	+	·	·	·	+	n!)	+	n!e−x	dx	1	=	e−1	(1	+	n	+	n(n	−	1)	+	·	·	·	+	2n!).	c)	By	hypothesis,	given	ε	>	0	there	is	an	N	∈	N
such	that	n	≥	N	implies	xn	>	1/2	and	|xn	−	1|	<	ε/(1	+	2e).	107	Copyright	©	2010	Pearson	Education,	Inc.	Since	c2	>	c1	,	it	follows	that	f	00	(c)	>	0.	Thus	by	Theorem	2.36,	lim	supn→∞	(1/xn	)	=	0	=	1/s.	However,	k	·	(−1)k+1	/k	=	(−1)k+1	does	not	converge	to	0	as	k	→	∞.	6.5	Estimation	of	series.	Suppose	it	holds	for	some	n	≥	1.	By	Theorem	6.35,	Z	Z
∞	−	∞	f	(x)	dx	≤	sn	−	s	≤	f	(n)	−	n	f	(x)	dx,	n	so	Z	∞	|s	−	sn	|	≤	f	(n)	+	f	(x)	dx.	b)	R	is	closed	by	Theorem	10.16.	Since	P	(f	)	is	a	linear	combination	of	f	n	’s	and	constants,	it	too	is	integrable	on	[a,	b]	by	Theorem	5.19.	Thus	by	Theorem	8.37ii,	E⊂	[	Bf	(x)	(x)	⊂	x∈E	[	Bg(x)	(x).	Since	the	dyadic	rationals	are	the	union	of	the	Am	’s	as	m	ranges	over	N,	they
must	be	at	most	countable	by	Theorem	1.42ii.	d)	The	Lagrange	equations	are	3	=	6λx	−	3µx2	,	1	=	λ,	0	=	12z	2	λ	+	12z	3	µ,	1	=	µ.	Then	nk	<	ρ(xnk	,	a)	≤	ρ(xnk	,	b)	+	ρ(a,	b)	<	1	+	ρ(a,	b)	for	k	large.	p	x	x	x	Since	p	−	q	>	1,	it	follows	from	the	comparison	test	that	f	(x)	is	improperly	integrable	on	[1,	∞).	By	the	∞	Alternating	Series	Test,	k=0	(−1)k	ak
converges,	so	f	(1)	converges.	129	Copyright	©	2010	Pearson	Education,	Inc.	2	2	2	0	0	0	13.1.7.	a)	If	gk	→	g	uniformly	on	φ(I),	then	gk	(φ(t))kφ0	(t)k	→	g(φ(t))kφ0	(t)k	uniformly	on	I.	Thus	k	>	N	implies	k(log(k	+	1)	−	log	k,	2−k	)	−	(0,	0)k	<	ε.	√	2.3.1.	Suppose	that	−1	√	<	xn−1	<	0	for	some	n	≥	0.	Then	Z	Z	b	xy	dx	+	(x	+	y)	dy	=	cx	dx	=	C1	Z	a	Z	d	xy
dx	+	(x	+	y)	dy	=	C2	Z	(b	+	y)	dy	=	b(d	−	c)	+	c	Z	a	xy	dx	+	(x	+	y)	dy	=	C3	c(b2	−	a2	)	,	2	d	·	x	dx	=	b	d2	−	c2	,	2	−d(b2	−	a2	)	,	2	138	Copyright	©	2010	Pearson	Education,	Inc.	Conversely,	if	C	is	closed,	then	C	=	E	∩	C	implies	that	C	is	relatively	closed	in	E.	|m|	+	1	25	Copyright	©	2010	Pearson	Education,	Inc.	8.4.8.	a)	By	Remark	8.23,	∅	and	Rn
are	clopen.	Since	k(x,	y)k	≤	1	+	x2	+	y	2	=	kNφ	k,	it	follows	that	ZZ	Z	Z	2	|f	(x,	y)	−	f	(0,	0)|	dσ	≤	S	2π	2	Z	√	8	(1	+	x	+	y	)	d(x,	y)	=	E	0	(1	+	r2	)r	dr	dθ	=	40π.	A	similar	argument	proves	that	if	f	−1	(A)	∩	E	is	relatively	closed	in	E	for	all	closed	sets	A	in	Rm	,	then	f	is	continuous	on	E.	Similarly	for	intersections	of	relatively	closed	sets.	It	follows	that	ÃZ
!1/n	µ	¶	b	³	²´	³	²	´	1/n	M	+²	n	M	−²=ξ	M	−	<	M−	|I|	≤	|f	(x)|	dx	0	there	is	a	δ	>	0	such	that	²	(*)	|x	−	y|	<	δ	and	x,	y	∈	I	imply	|g(x)	−	g(y)|	<	.	6.6.1.	a)	The	ratio	of	successive	terms	of	this	series	is	2k	+	3	>	1.	But	by	hypothesis,	Z	b	f	(x)	·	fn	(x)	dx	=	a	for	all	n	∈	N.	d)	Since	f	(1)	=	1,	f	0	(1)	=	1/2,	f	00	(1)	=	−1/22	and	f	(n)	(1)	=	(−1)n−1	1	·	3	·	·	·	(2n	−
3)/2n	for	n	≥	2,	we	have	√	∞	x=1+	x	−	1	X	(−1)k−1	1	·	3	·	·	·	(2k	−	3)	+	(x	−	1)k	.	4.5.7.	By	4.5.6a,	f	−1	is	differentiable	on	[c,	d].	f)	limx→0+	log(log	x)/(1/x)	=	limx→0+	(1/(x	log	x)/(−1/x2	)	=	limx→0+	−x/	log	x	=	limx→0+	−1/(1/x)	=	0.	Then	there	is	a	pair	of	open	sets	U,	V	which	separates	A.	If	m	is	the	number	of	nonzero	components	of	the	vector	x,
then	Ã	!2/(p−2)	µ	¶2/(p−2)	n	X	2	1	2	xj	=	m	=	m	Pn	.	Then	A	and	B	are	connected	in	R2	but	A	∩	B	=	{(−1,	1),	(1,	1)}	T	is	not	connected.	b)	limx→0+	(cos	x	−	ex	)/(log(1	+	x2	))	=	limx→0+	(−	sin	x	−	ex	)/(2x/(1	+	x2	))	=	−∞.	5.1.3.	a)	Let	²	>	0	and	suppose	that	f	is	bounded	on	[a,	b],	say	by	M	>	0,	and	continuous	on	[a,	b]	except	at	a	finite	set	E.	8
13.4.3.	a)	Using	the	trivial	parameterization	z	=	x4	+	y	2	,	we	see	that	Nφ	=	(4x3	,	−2y,	1)	points	upward.	c)	By	Gauss’	Theorem,	ZZ	Z	Z	1	2−x2	Z	z	F	·	n	dσ	=	3	dx	dy	dz	=	S	x2	−1	0	3	2	Z	1	((2	−	x2	)2	−	(x2	)2	)	dx	=	8.	13.3.1.	a)	If	(φ,	E)	is	the	parameterization	given	in	Example	13.33,	then	√	kφu	×	φv	k	=	k(v	cos	u,	v	sin	u,	−v)k	=	2v.	Hence	(P,	Q,	R)
=	(0,	z	2	,	xy).	Finally,	let	G	=	{R1	,	.	Then	|ka2k	|	<	²	for	k	≥	N	,	i.e.,	2k	a2k	→	0	as	k	→	∞.	Choose	α0	∈	A	such	that	V	∩	Eα0	6=	∅.	bk	bk	bn	bk+1	bk	k=m	k=m	k=m	Now	1/bn	→	0	as	n	→	∞	so	∞	X	ak	=	lim	n→∞	k=m	n−1	X	µ	(ck	−	ck+1	)	k=m	1	bk+1	−	1	bk	¶	and	this	limit	must	exist.	Hence	0	by	Theorem	4.33,	f	−1√	(x)	:=	arcsin	x	is	differentiable	on
cos	y	for	x	=	sin	y.	√	The	function	f	might	take	[a,	b]	to	something	outside	the	domain	of	g.	But	X	is	separable,	so	it	follows	from	Lindel¨of’s	Theorem	that	there	exist	open	balls	Bj	:=	B²j	(xj	)	such	that	V	⊆	∪∞	j=1	Bj	.	k=1	6.1.5.	By	telescoping,	ì	ï	í	−1	(x2k	−	x2(k−1)	)	=	(−1	+	lim	x2k	)	=	0	ï	k→∞	î	k=1	diverges	∞	X	|x|	<	1	|x|	=	1	|x|	>	1.	Thus	G	◦	f	is
C	p	on	M	by	definition.	c)	Suppose	F	is	conservative,	i.e.,	F	=	(fx	,	fy	)	for	some	C	1	function	f	on	V	.	Therefore,	fk	→	f	uniformly	on	R.	Since	(sin	x)0	=	cos	x	is	negative	on	[π/2,	3π/2],	f	is	1–1	there,	but	the	domain	of	arcsin	x	is	[−π/2,	π/2].	Since	(f	(x)	−	f	(x0	))/(x	−	x0	)	=	(xn	−	xn0	)/(x	−	x0	)	=	xn−1	+	·	·	·	+	xn−1	,	it	is	clear	that	f	0	(x0	)	=	nxn−1	.	c)
Let	xn	=	n	and	yn	=	n	+	1/n.	Pn	7.2.7.	Let	Fn,m	:=	k=m	fk	.	Thus	n	≥	N	implies	|(2	−	1/n)	−	2|	≡	|1/n|	≤	1/N	<	ε.	But	if	an	and	bn	are	Cauchy,	then	by	Theorem	2.29,	an	+bn	→	x	where	x	∈	R.	Let	f	and	g	be	as	in	the	solution	to	3.3.0d.	Let	A	=	B	=	[0,	1].	If	(x,	y)	→	(1,	b)	for	some	b	>	0,	we	can	assume	that	0	<	y0	≤	y	≤	y1	for	some	y0	<	b	<	y1	,	so	|(y	+
1)/y|	≤	(1	+	y1	)/y0	=:	M	.	Then	Z	Z	1	P	dx	+	Q	dy	+	R	dz	=	(P,	Q,	R)	·	(−1,	0,	1)	dt	C1	0	Z	Z	1	=−	1	P	(1	−	t,	0,	t)	dt	+	0	Z	R(1	−	t,	0,	t)	dt	0	Z	1	=−	R(1	−	z,	0,	z)	dz.	Suppose	f	0	(x0	)	>	0.	e	1.3.5.	Suppose	that	E	is	a	bounded,	nonempty	subset	of	Z.	2.1.5.	If	C	=	0,	there	is	nothing	to	prove.	The	trace	spirals	around	the	elliptical	cylinder	y	2	+	9z	2	=	9.	I
13.2.6.	Since	f	is	continuously	differentiable	and	nonzero	on	[a,	b],	we	have	by	the	Intermediate	Value	Theorem	that	either	f	0	>	0	on	[a,	b]	or	f	0	<	0	on	[a,	b].	b)	Choose	h	6=	0	small	enough	so	that	f	(a	+	h)	6=	0.	Therefore,	lim	supn→∞	(xn	yn	)	=	∞.	1	−	u2	Since	sin	1	<	1,	this	last	integral	is	improper	only	at	u	=	0.	h	h	b)	If	f	is	differentiable	at	x0
then	taking	the	limit	of	both	inequalities	in	part	a),	we	obtain	estimates	of	the	derivative	of	f	at	x0	.	Thus	n	≥	N	implies	|(2n2	+	1)/(3n2	)	−	2/3|	≡	|1/(3n2	)|	≤	1/(3N	2	)	<	ε.	,	9}.	3	b)	By	Green’s	Theorem,	Z	Z	Z	2	3	F	·	T	ds	=	C	(	0	0	1	−	ey	)	dy	dx	=	x+1	Z	2	(	0	3	+	1	−	e3	)	dx	=	3	log	3	+	2(1	−	e3	).	Hence	L	=	0	by	the	inductive	hypothesis.	Hence	this
expansion	is	valid	on	(0,	2].	If	f	is	not	1–1	then	there	exist	a,	b	∈	X	such	that	a	6=	b	and	y	:=	f	(a)	=	f	(b).	86	Copyright	©	2010	Pearson	Education,	Inc.	But	n−1	q	−1	nq	=	1	and	uniqueness	of	multiplicative	inverses	implies	(nq)−1	=	n−1	q	−1	.	Since	(x	+	E)c	=	x	+	E	c	,	it	is	easy	to	see	that	∂(x	+	E)	=	x	+	∂E.	,	and	Pn	sn	=	j=1	bj	,	then	lim	inf	n→∞	sn	=
x	and	lim	supn→∞	sn	=	y.	However,	it	is	connected.	∂x1	∂xj	i=1	j=1	Since	H	is	compact	and	all	these	partial	derivatives	are	continuous	on	H,	it	follows	that	there	is	a	C	>	0	such	that	n	X	n	X	|D(2)	f	(c;	x	−	a)|	≤	C	|xi	−	ai	|	|xj	−	aj	|	≤	n2	Ckx	−	ak2	.	k=1	P∞	P∞	6.1.1.	(−1)k+1	/ek−1	=	k=0	(−1/e)k	=	1/(1	+	1/e)	=	e/(1	+	e).	,	N	}	PN	which	covers	E	such
that	j=1	|Rj	|	<	².	8.1.1	a)	kx	−	yk	≤	kx	−	zk	+	kz	−	yk	<	2	+	3	=	5.	Thus	by	part	a),	Area	(E)	=	1	2	Z	∞	0	9t2	dt	3	=	(1	+	t3	)2	2	Z	∞	1	du	3	=	.	Since	x	=	y	3/2	implies	x0	=	3	y/2,	we	have	by	the	explicit	form	(see	the	formula	which	follows	(3))	that	Z	L(C)	=	2	1	Z	p	1	+	9y/4	dy	=	0	1	√	2(	133	−	1)	4	+	9y	dy	=	.	By	Theorems	8.30	and	9.30,	f	([0,	1])	is
connected.	Therefore,	f	is	continuous	at	each	point	x	∈	[0,	1].	0	<	s	<	∞.	9.4.7.	a)	Since	f	is	continuous,	so	is	kf	k.	π	−π	And,	by	a	sum	angle	formula,	√	Z	√	π	2	π	cos	2x	cos	kx	dx	π	−π	√	Z	π	√	√	2	=	(cos(	2	+	k)x	+	cos(	2	−	k)x)	dx	2	−π	Ã	!	√	√	√	sin(	2	+	k)π	sin(	2	−	k)π	√	√	=	2	+	2+k	2−k	Ã	!	√	√	√	sin	2π	cos	kπ	sin	2π	cos	kπ	√	√	=	2	+	2+k	2−k	Ã	√	√	!	√
k	√	2	2(−1)	sin	2π	4(−1)k	sin	2π	=	2	=	.	(2n	+	1)!	(2n	+	2)!	Since	x	∈	(0,	π)	implies	xn+1	>	0	and	sin	c	>	0,	it	follows	that	R	>	0	when	n	+	1	is	even,	i.e.,	when	n	=	2m	−	1	and	R	<	0	when	n	+	1	is	odd,	i.e.,	when	n	=	2m.	Hence	m	S(f	;	Gm	)	=	m	2	2	1	XX	24m	jk	=	j=1	k=1	22m	(2m	+	1)2	24m	+	23m+1	+	22m	=	.	Since	|	cos(θ))|	≤	1	for	any	θ,	it	follows
that	|f	(x)	−	L|	=	−|	cos(tan	x)|/(x	+	1)	≤	−1/(x	+	1)	<	ε.	Since	this	plane	contains	(2,	1,	0,	0),	(0,	1,	1,	0),	and	(0,	4,	0,	1),	it	follows	that	a	=	1,	2a	+	b	=	1,	b	+	c	=	1,	and	4b	+	d	=	1,	i.e.,	a	=	1,	b	=	−1,	c	=	2,	and	d	=	5.	Hence,	by	the	Completeness	Postulate,	M2	exists	and	satisfies	M2	≤	M1	.	Then	s	≥	ρ(xn	,	b)	for	all	n	∈	N,	i.e.,	xn	∈	Bs	(b)	for	all	n	∈	N.
153	Copyright	©	2010	Pearson	Education,	Inc.	If	P	were	uniformly	continuous	on	R,	then	given	0	<	²	<	1	there	is	a	δ	>	0	such	that	|x	−	y|	<	δ	implies	|P	(x)	−	P	(y)|	<	².	If	a	=	0	then	the	inequalities	are	trivial.	Since	ν(s)	=	φ(`−1	(s)),	it	follows	from	the	Chain	Rule	that	ν	0	(s)	:=	dν	dφ	dt	1	φ0	(t)	(s)	=	(t)	=	0	·	φ0	(t)	=	0	.	Hence	by	Theorem	10.39,	∂E	=
E	\	E	0	=	∂(E	0	)	=	∂(E).	for	each	fixed	x	∈	(0,	2π).	γ)	f	is	1–1	on	(π/2,	3π/2)	because	f	0	(x)	=	sec2	x	>	0	there.	6.3.2.	a)	The	Ratio	Test	gives	1,	but	the	series	converges	by	the	Comparison	Test	since	k	>	e5	implies	log	k	>	5	so	k3	k3	1	<	<	2.	Thus	E	is	nonempty.	Since	f	is	continuous	and	f	(xn	)	>	y0	for	all	n	∈	N,	we	have	f	(x0	)	≥	y0	.	Thus	the	integral
converges	for	all	p	>	1	by	part	a).	Then	|f	|	≤	g	and	g	is	absolutely	integrable	on	[0,	1]	(the	integral	has	value	3),	but	f	is	NOT	even	locally	integrable	on	(0,	1)	much	less	improperly	integrable.	Similarly,	induction	can	be	used	to	establish	6(n	+	1)	≤	4	·	3n	for	n	≥	1.	Since	φ(t1	)	−	φ(t0	)	=	(t1	−	t0	)b	and	φ(t2	)	−	φ(t0	)	=	(t2	−	t0	)b,	it	follows	that	cos	θ	=
(t1	−	t0	)(t2	−	t0	)kbk2	=	±1.	6	0	2π	Hence	it	suffices	to	prove	that	R/r2	→	0	as	r	→	0.	If	a	=	b	then	ac	=	bc	since	·	is	a	function.	71	Copyright	©	2010	Pearson	Education,	Inc.	b)	By	(2)	in	5.1	and	part	a),	cos	θ	=	∇f	(a)	·	u/(k∇f	(a)k	kuk)	=	Du	f	(a)/k∇f	(a)k.	2	Hence	¯	¯¯	¯	0	0	¯	2	sin(θs	/2)	¯	¯	¯	θs	¯¯	¯	=	lim	kν	(s)	−	ν	(s0	)k	=	kν	00	(s0	)k.	By	Theorem	9.30,
f	(E)	is	connected	in	R,	which	by	Theorem	8.30	means	f	(E)	is	an	interval.	a)	σn	=	k=0	(1	−	k/n)ak	=	k=0	(n	−	k)ak	/n	=	(na0	+	(n	−	1)a1	+	·	·	·	+	an−1	)/n	=	(a0	+	(a0	+	a1	)	+	·	·	·	+	(a0P+	a1	+	·	·	·	+	an−1	))/n	=	(s1	+	·	·	·	+	sn	)/n.	Then	by	part	b)	(with	p	=	1)	and	the	Comparison	Theorem,	Ã	∞	X	!1/2	x2j	≤	k=1	11.7.10.	abj	.	b)	Since	E	is	bounded,
choose	M	so	large	that	|x|	<	M	and	|y|	<	M	for	all	(x,	y)	∈	E.	f)	The	maximum	of	(k−1)/k	and	the	minimum	of	(k+1)/k	for	k	∈	N	is	1.	But	x	∈	E	implies	x	∈	A	or	x	∈	B.	4M	k=0	∪nk=1	[x2k−1	,	x2k	]	Let	E0	:=	δ	>	0	such	that	and	observe	that	f	is	continuous	(hence,	uniformly	continuous)	on	E0	.	By	Remark	8.14,	S	∈	L(Rn	;	Rn	).	By	the	Mean	Value
Theorem,	F	(x)	−	F	(y)	=	F	0	(c)(x	−	y)	=	µ	¶	f	0	(c)	1−	0	(x	−	y).	Therefore,	Z	1	Z	Z	2x2	Vol	(E)	=	2	Z	0	x2	/4	Z	3−x	(x	+	y)	dy	dx	+	1	(x	+	y)	dy	dx	=	(	x2	/4	1	0	7x3	63x4	91	+	)	dx	=	.	Define	ψ	(respectively	τ	)	on	[0,	1]	by	ψ(t)	=	ψj	(t)	(respectively	τ	(t)	=	τj	(t))	when	t	∈	((j	−	1)/N,	j/N	),	and	ψ(t)	=	0	(respectively	τ	(t)	=	0)	otherwise.	Let	xk	∈	E	such	that
xk	→	sup	E	as	k	→	∞.	b)	Let	M	∈	R	and	choose	by	Archimedes	an	N	∈	N	such	that	N	>	−M/2.	,	M	}	which	covers	A	such	that	j=N	+1	|Rj	|	<	²/2.	n→∞	n→∞	10k	9n	.999	·	·	·	=	lim	k=1	2.3	The	Bolzano–Weierstrass	Theorem.	Since	ψ	0	(u)	=	u/(1	−	u)2	,	ψ	has	an	absolute	minimum	of	0	at	0.	d)	Since	the	range	of	tan	x	on	(−π/2,	π/2)	is	(−∞,	∞),	c	=	−∞	and	d
=	∞.	,	VN	to	cover	A	and	VN	+1	,	.	b)	Since	limn→∞	(supk≥n	xk	)	>	r,	there	is	an	N	∈	N	such	that	supk≥N	xk	>	r,	i.e.,	there	is	a	k1	∈	N	such	that	xk1	>	r.	7.2.1.	a)	Since	|	sin(x/k	2	)|	≤	|x|/k	2	≤	max{|a|,	|b|}/k	2	for	any	x	∈	[a,	b],	this	series	converges	uniformly	on	[a,	b]	by	the	Weierstrass	M–Test.	By	definition,	a	∈	f	−1	(E)	so	x	≡	f	(a)	∈	f	(f	−1	(E)).	b)
By	factoring,	we	see	that	the	inequality	is	equivalent	to	1/(2n	+	1)	<	1/40,	i.e.,	2n	+	1	>	40.	Finally,	since	x0	=	sup	E	we	have	f	(x0	+	h)	≤	y0	=	f	(x0	)	for	any	h	>	0.	This	verifies	the	first	identity.	We	obtain	kT	(x)k	≤	M2	kxk	for	all	x	∈	Rn	.	c)	Repeat	the	proof	of	Theorem	2.12,	replacing	the	absolute	value	by	the	norm	sign.	Hence	by	Dini’s	Theorem	and
Theorem	7.10,	Z	1³	Z	1	x	´k	x	e4	−	1	lim	1+	e	dx	=	e2x	dx	=	.	¯	¯≤	k	k(k	+	1)	k	k+1	k=1	k=1	k=1	67	Copyright	©	2010	Pearson	Education,	Inc.	k(h,	k)k	h2	+	k	2	√	Along	the	path	H	=	0,	this	expression	is	0	and	along	the	path	h	=	k,	this	expression	is	1/	2.	Since	e−1/t	→	0	as	t	→	0+,	given	²	>	0	choose	δ	>	0	such	that	0	<	t	<	δ	implies	e−1/t	<	².	If	x	∈	/
A,	then	it	follows	from	b)	that	f	(A)	=	f	(A	\	{x})	=	f	(A)	\	f	({x}),	i.e.,	f	(x)	∈	/	f	(A),	a	contradiction.	c)	If	nk	=	2k,	then	(nk	−(−1)nk	nk	−1)/nk	≡	−1/(2k)	converges	to	0;	if	nk	=	2k+1,	then	(nk	−(−1)nk	nk	−1)/nk	≡	(2nk	−	1)/nk	=	(4k	+	1)/(2k	+	1)	converges	to	2.	Consequently,	¯	¯	¯	¯	¯	f	(h,	k)	−	f	(0,	0)	−	∇f	(0,	0)	·	(h,	k)	¯	¯	(hk)α	log(h2	+	k	2	)	¯	¯	¯=¯	¯	¯
¯	¯	(h2	+	k	2	)1/2	¯	k(h,	k)k	≤	1	2	(h	+	k	2	)α−1/2	log	2α	µ	1	h2	+	k	2	¶	.	Then	cos	x/(mx	+	b)	→	cos	1/0−	=	−∞	as	x	→	1−,	so	by	Theorem	3.40,	this	function	cannot	possibly	be	uniformly	continuous	on	(0,	1).	Repeating	the	argument	above,	we	find	a	normal	of	the	form	(1,	Fy	/Fx	,	Fz	/Fx	)	which	again	is	parallel	to	n	=	(Fx	(a,	b,	c),	Fy	(a,	b,	c),	Fz	(a,	b,
c)).	dx	j=1	n	X	½	(−1)j−1	dx1	.	Thus	by	Theorem	8.9vii,	d	is	a	normal	to	the	plane.	n→∞	n→∞	n→∞	2.5.5.	a)	For	any	j	≥	n,	xj	≤	supk≥n	xk	and	yj	≤	supk≥n	yk	.	8.2.9.	By	definition,	B(x,	y)	=	(x	cos	θ	+	y	sin	θ,	−x	sin	θ	+	y	cos	θ).	Hence	we	can	choose	J	so	large	that	j	>	J	implies	|	k=1	ak	/(j	+	k)|	<	²/2.	Let	H	=	[b	−	²,	b	+	²]	×	[a2	,	b2	]	×	·	·	·	×	[an	,	bn	]
and	observe	that	H	covers	R	∩	Q	=	{b}	×	[a2	,	b2	]	×	·	·	·	×	[an	,	bn	].	Then	σ	takes	Bδ	(g(x))	onto	B1	(0),	and	by	part	a),	(V,	h)	belongs	to	A.	Thus	the	graph	of	y	=	|x	+	1|	for	x	∈	[−2,	2]	consists	of	Rtwo	triangles,	the	left	one	with	base	1	and	altitude	1,	and	the	right	one	with	base	3	and	altitude	3.	g(0,	π)	=	{1}	is	connected	as	Theorem	9.30	says	it
should;	g[0,	π]	=	{0,	1}	is	compact	but	not	connected–note	that	Theorem	9.29	does	not	apply	since	g	is	not	continuous;	g(−1,	1)	=	{−1,	0,	1}	is	not	open	and	we	don’t	expect	it	to	be;	g[−1,	1]	=	{−1,	0,	1}	is	compact	but	not	connected–note	that	Theorem	9.29	does	not	apply	since	g	is	not	continuous.	We	check	the	boundary	in	three	pieces.	Thus	{φj	◦
φ−1	}	is	a	partition	of	unity	on	φ(V	)	subordinate	to	the	covering	{φ(Wj	)}.	The	series	converges	at	x	=	2	by	the	alternating	series	test	but	diverges	at	x	=	0.	(see	Exercise	4.2.7)	and	that	1	1	Mj	(f	)	−	mj	(f	)	−	≤	.	By	the	Inverse	Function	Theorem,	φ−1	(hence	also	φj	◦	φ−1	)	is	C	1	on	φ(V	).	0	Z	π	Z	y	+	1	dy	=	0	28	.	If	X	=	[0,	2],	A	=	[0,	1]	and	B	=	{1},
then	B	\	A	=	∅	but	(A	\	B)c	=	[0,	1)c	=	[1,	2].	b)	The	Lagrange	equations	are	2x	√−	4y	=	2xλ	and	−4x	+	8y	=	2yλ,	i.e.,	(2x	+	y)λ	=	0.	,	n	+	1}.	But	by	the	Extreme	Value	Theorem,	there	exist	x∗	,	y	∗	∈	[xk−1	,	xk	]	such	that	f	(x∗	)	=	sup	Ek	and	f	(y	∗	)	=	inf	Ek	.	Since	curl	F	=	(zey	,	1,	y),	it	follows	from	Stokes’s	Theorem	that	Z	ZZ	(y	3	ey	,	1,	y)	·	(0,	−3y
2	,	1)	dA	F	·	T	ds	=	−	B√3	(0,0)	√	Z	2π	3	C	Z	(3r3	sin2	θ	−	r2	sin	θ)	dr	dθ	=	0	Z	=	3π	0	√	3	r3	dr	+	0	=	27π/4.	Thus	kf	−	gk1	is	positive	definite.	a)	By	Example	7.44,	cos	x	=	P7.4.1.	∞	k	2k	(−4)	x	/(2k)!	for	x	∈	R.	,	n},	hence	ψ	◦	φ	is	1–1	from	{1,	2,	.	Since	f	(x)	=	−1	implies	x	=	1	and	f	(x)	=	2	implies	x	=	0,	we	also	have	f	−1	(E)	=	(0,	1).	k=1	This	yields
two	equations	in	the	two	unknowns	a,	b:	(	n	X	x2k	)a	+	(	k=1	n	X	xk	)b	=	k=1	(	n	X	xk	)a	+	nb	=	k=1	n	X	k=1	n	X	xk	yk	yk	k=1	so	the	matrix	of	coefficients	has	determinant	d0	.	However,	by	Exercise	7.1.1b,	fn	(x)/gn	(x)	=	1/(nx)	does	not	converges	uniformly	on	(0,	1).	0	c)	By	the	Chain	and	Product	Rules	F	0	(x)	=	x	cos	xf	(x	cos	x)	d	(x	cos	x)	=	x	cos	xf
(x	cos	x)(cos	x	−	x	sin	x).	Now	n3	≤	3n	holds	by	inspection	for	n	=	1,	2,	3.	k	10	10k	10	k=1	c)	Combine	b)	with	the	Squeeze	Theorem.	By	assumption	iv)	and	part	a),	sin	x	=	sin((x−x0	)+x0	)	=	sin(x−x0	)	cos	x0	+cos(x−x0	)	sin	x0	→	0	+	sin	x0	=	sin	x0	as	x	→	x0	.	6.2.1.	a)	It	converges	by	the	Limit	Comparison	Test,	since	(2k	+	5)/(3k	3	+	2k	−	1)	2	→	6=
0	1/k	2	3	as	k	→	∞.	2α	n=1	162	Copyright	©	2010	Pearson	Education,	Inc.	12.1.7.	a)	Fix	x	∈	Rn	.	xn	−	x	=	(	xn	−	x)	√	=√	xn	+	x	xn	+	x	√	Since	xn	≥	0,	it	follows	that	√	√	|xn	−	x|	|	xn	−	x|	≤	√	.	12.2.1.	Clearly,	Mjk	=	jk/22m	and	mjk	=	(j	−	1)(k	−	1)/22m	.	Indeed,	f	0	(0)	=	lim	h→0−	f	(h)	−	f	(0)	f	(−h)	−	f	(0)	f	(h)	−	f	(0)	=	lim	=	−	lim	=	−f	0	(0).	Indeed,
this	surely	holds	for	k	=	0.	Hence	¯Z	¯	Z	Z	π/2	Z	π/4	¯	π/2	¯	π/4	π	−a√2/2	¯	¯	−a	sin	x	−a	sin	x	−a	sin	x	e	dx	≤	e	dx	+	e	dx	≤	e	+	e−2ax/π	dx.	5.3	The	Fundamental	Theorem	of	Calculus.	6.5.3.	a)	Since	[1/(k	+	1)!]/[1/k!]	=	1/(k	+	1)	→	0	as	k	→	∞,	this	series	converges	by	the	Ratio	Test.	The	result	does	not	hold	for	bounded	functions.	11.2.9.	By	the
Squeeze	Theorem,	|f	(x)|	≤	kxk	→	0	as	x	→	0	so	f	(0)	=	0.	Hence	f	(x0	+	h)	−	f	(x0	)	f	(x0	+	h)	−	f	(x0	)	≤	0	when	h	>	0	and	≥	0	when	h	<	0.	Since	f	is	bounded,	L	<	∞	by	the	Completeness	Axiom.	2.4.8.	a)	To	show	E	:=	[a,	b]	is	sequentially	compact,	let	xn	∈	E.	Since	f	0	(x)	=	3x2	+	6x	+	4,	f	is	increasing	and	has	only	one	real	root.	Thus	set	βk	=	P	(k)	(x0
)/k!.	c)	Let	y	=	E(xq)	and	t	=	E(x).	96	Copyright	©	2010	Pearson	Education,	Inc.	Finally,	by	the	Comparison	Theorem	for	Integrals,	|f	−	g|	≤	|f	−	h|	+	|h	−	g|	implies	that	kf	−	gk1	≤	kf	−	hk1	+	kh	−	gk1	,	so	kf	−	gk1	satisfies	the	triangle	inequality.	Hence	this	series	converges	by	the	Alternating	Series	Test.	n	n	n	n	Therefore,	by	the	uniqueness	of
additive	inverses,	−(m/n)	=	(−m)/n.	In	particular,	it	cannot	be	rational.	d)	Let	ε	>	0	and	set	δ	:=	3	ε.	It	follows	that	U	is	relatively	open	in	B1	(0,	0)	and	relatively	closed	in	B√2	(2,	0).	It	converges	at	x	=	−1/e	by	the	Alternating	Series	Test	but	evidently	does	not	converge	absolutely.	Then	|ax0	−	ax	|	=	ax	−	ax0	<	aq	−	ar	=	ar	(aq−r	−	1)	<	ax0	(a1/N	−
1)	≤	ε.	Then	0	=	φ0	(x)	=	x(−e−x	)	+	e−x	implies	x	=	1.	k=0	(Either	apply	Abel’s	Transformation	to	the	Geometric	Series,	or	use	the	techniques	introduced	in	Section	7.3.)	Thus	by	part	a),	|	∞	X	∞	X	ak	rk	−	L|	=	(1	−	r)2	|	k=0	(k	+	1)(σk	−	L)rk	|	k=0	≤	(1	−	r)2	N	−1	X	(k	+	1)|σk	−	L|rk	+	²(1	−	r)2	k=0	≤	(1	−	r)2	N	−1	X	∞	X	(k	+	1)rk	k=N	(k	+	1)|σk	−
L|rk	+	².	b)	x	−	1	6=	0	for	x	∈	[0,	1),	so	f	(x)	:=	(x2	+	x	−	2)/(x	−	1)	is	continuous	on	[0,	1)	by	Theorem	3.22.	We	examine	the	trace	of	φ(t)	as	t	→	−∞,	t	→	−1−,	t	→	−1+,	and	t	→	∞.	Since	φ	:	{1}	→	{1},	it	must	satisfy	φ(1)	=	1.	By	repeating	the	proof	of	Lemma	3.38	we	can	show	that	f	(xn	)	is	Cauchy.	k	k	k=0	k=2	Since	C	is	a	sum	of	positive	numbers,	the
promised	inequality	follows	at	once.	2.2.0.	a)	False.	b)	By	the	Comparison	Theorem,	Z	2n	1	2X	−1	Z	k+1	2X	−1	2	1	1	1	X1	dx	=	dx	<	<	x	x	k	k	k	n	n	k=1	n	k=1	k=1	for	all	n	∈	N.	If	1	<	x	<	1	+	δ,	then	1	<	x	≤	2	since	δ	≤	1.	c)	The	set	A	given	in	Example	12.2	is	countable,	hence	of	Lebesgue	measure	zero,	but	not	a	Jordan	region.	A	similar	argument
works	for	the	infimum	as	well.	b)	Let	(x,	y,	z)	=	φ(t).	Also,	æ	öÃ	!	∞	X	∞	∞	∞	X	X	X	φj	ψk	=	è	φj	ø	ψk	=	1	·	1	=	1.	(3k	−	2)(3k	+	1))	¯	¯	−1	−	2k	¯	2	¯	¯=¯	¯	¯	¯	¯	3k	+	1	¯	→	3	<	1,	(−1)(−3)	.	and	bounded	above	by	3.	b)	Let	L	=	0	and	suppose	ε	>	0.	2.1.1.	a)	By	the	Archimedean	Principle,	given	ε	>	0	there	is	an	N	∈	N	such	that	N	>	1/ε.	Let	xn	→	x0	∈	(c,	d).
10.1.6.	By	Theorem	10.14,	if	xn	→	a	then	xnk	→	a.	(bn	−	an	)	it	follows	from	Theorem	12.4	that	Vol	(R	∩	Q)	=	0.	k=1	√	√	√	e)	Since	(	k	+	1/k	k+1/2	)/(1/k	k	)	=	k	+	1/	k	→	1	as	k	→	∞,	this	series	converges	absolutely	by	the	Limit	Comparison	Test.	is	open	as	Theorem	9.26	says	it	should;	f	−1	[0,	π]	=	.	b)	Consider	f	(x)	=	ex	−	2	cos	x	−	1.	By	Exercise
4.5.4b,	it	follows	that	f	takes	I	onto	some	interval	J,	and	f	−1	is	continuously	differentiable	on	J.	If	y	=	1	then	f	(x,	y)	=	x3	+	3x	−	1	which	has	no	critical	points.	d)	Integrating	the	binomial	series	term	by	term,	Z	∞	x	√	arcsin	x	=	0	X	dt	=	2	1−t	k=0	Z	0	x	µ	¶	¶	∞	µ	X	−1/2	−1/2	x2k+1	(−1)k	t2k	dt	=	(−1)k	k	k	2k	+	1	k=0	for	all	|x|	<	1.	b)	The	sequence	(k,
1,	.	On	the	other	hand,	if	r	≤	1,	then	(by	Exercise	5.6.4)	φ(x)	=	x1/r	is	convex	on	[0,	∞).	On	the	other	hand,	it	is	easy	to	check	that	n2	+	7n	is	not	a	perfect	square	for	n	=	1,	2,	.	Thus	Z	2π	f	(a	+	r	cos	θ,	b	+	r	sin	θ)	cos(2θ)	dθ	=	fxx	(a,	b)	0	πr2	πr2	−	fyy	(a,	b)	+R	4	4	where	Z	Z	2π	(r	cos	θ)3	(r	cos	θ)2	(r	sin	θ)	R	:=	fxxx	(c,	d)	cos(2θ)	dθ	+	fxxy	(c,	d)	cos(2θ)
dθ	6	2	0	0	Z	2π	(r	cos	θ)(r	sin	θ)2	+	fxyy	(c,	d)	cos(2θ)	dθ	2	0	Z	2π	(r	sin	θ)3	+	fyyy	(c,	d)	cos(2θ)	dθ.	We	obtain,	from	part	a),	y	=	xy,	i.e.,	x	=	y.	k!(n	+	k)!	2	k	68	Copyright	©	2010	Pearson	Education,	Inc.	Since	ξ	:=	(M	−	²)/(M	−	²/2)	<	1,	choose	n	so	large	that	|I|1/n	>	ξ	and	(b	−	a)1/n	<	(M	+	²)/M	.	P∞	PN	6.1.11.	It	is	also	not	connected,	because	{(x,	y)
:	x	<	0}	and	{(x,	y)	:	x	>	0}	separates	the	set.	By	the	Density	Theorem	for	Irrationals,	there	are	infinitely	many	points	in	(x	−	²,	x	+	²)	∩	(R	\	Q).	g(0,	1)	=	(1,	∞)	is	connected	as	Theorem	9.30	says	it	should;	g[0,	1)	=	{0}	∪	(1,	∞)	is	neither	compact	nor	connected–note	that	Theorems	9.29	and	9.30	do	not	apply	since	g	is	not	continuous;	g[0,	1]	=	{0}	∪
[1,	∞)	is	neither	compact	nor	connected–note	that	Theorems	9.29	and	9.30	do	not	apply	since	g	is	not	continuous.	By	Green’s	Theorem,	∂Br	(x0	)	(Qx	−	Py	)	dA	=	0	for	all	r	>	0	sufficiently	small,	hence	by	Exercise	12.2.3,	Z	1	(Qx	−	Py	)(x0	)	=	lim	(Qx	−	Py	)	dA	=	0.	0	c)	If	Ry	=	x	and	Qz	=	0	then	R	=	xy	+	f	(x,	z)	and	Q	=	g(x,	y).	0.	3	Copyright	©	2010
Pearson	Education,	Inc.	Since	F	is	C	1	,	it	follows	that	f	is	C	2	on	V	.	0	c)	If	(φ,	E)	is	the	parameterization	given	in	Example	13.32,	then	Nφ	=	(b(a	+	b	cos	v)	cos	u	cos	v,	b(a	+	b	cos	v)	sin	u	cos	v,	b(a	+	b	cos	v)	sin	v),	so	F	·	Nφ	=	((a	+	b	cos	v)	sin	u,	−(a	+	b	cos	v)	cos	u,	b	sin	v)·	·	(b(a	+	b	cos	v)	cos	u	cos	v,	b(a	+	b	cos	v)	sin	u	cos	v,	b(a	+	b	cos	v)	sin	v)
=	b(a	+	b	cos	v)2	sin	u	cos	u	cos	v	−	b(a	+	b	cos	v)2	sin	u	cos	u	cos	v	+	b2	(a	+	b	cos	v)	sin2	v	=	ab	sin2	v	+	b3	sin2	v	cos	v.	Notice	that	φ0	(t)	=	t(1	−	x/t)−1	(x/t2	)	+	log(1	−	x/t)	=	u/(1	−	u)	+	log(1	−	u)	for	u	=	x/t.	Reproduced	by	Pearson	Prentice	Hall	from	electronic	files	supplied	by	the	author.	,	xN	}.	Multiplying	the	first	by	x,	the	second	by	y,	the
third	by	z,	adding	and	using	both	constraints,	we	see	that	xy	=	λ.	Thus	the	points	are	(1,	5)	and	(−3,	29).	But	E	⊆	A	⊆	E	implies	A	\	E	⊆	E	\	E	=	∂E.	Since	(0,	0)	lies	outside	of	H,	we	can	disregard	it.	b)	If	f	(x)	=	|x|/x	then	|f	(x)|	=	1	→	1	as	x	→	0,	but	f	(x)	has	no	limit	as	x	→	0.	3.1.6.	a)	By	Theorem	1.16,	0	≤	|	|f	(x)|	−	|L|	|	≤	|f	(x)	−	L|.	14.4.6.	By	Theorem
9.49,	f	is	almost	everywhere	continuous	on	[−π,	π].	Moreover,	by	the	claim,	Ã	N	!	N	X	X	(n+1)	k+1	−1/x2	k+3	−1/x2	lim	f	(x)	=	lim	(−kak	/x	)e	+	(2ak	/x	)e	=	0	=	f	(n+1)	(0).	Suppose	½	PN	k	−1/x2	x	6=	0	k=n+2	(ak	/x	)e	(*)	f	(n)	(x)	=	0	x	=	0.	Since	L	is	strictly	increasing,	it	follows	that	L(x)	→	∞	as	x	→	∞.	11.4.6.	urr	=	fxx	cos2	θ	+	fxy	sin	θ	cos	θ	+	fyx
sin	θ	cos	θ	+	fyy	sin2	θ,	and	uθθ	=	−fx	r	cos	θ	+	fxx	r2	sin2	θ	−	fxy	r2	sin	θ	cos	θ	−	fy	r	sin	θ	−	fyx	r2	sin	θ	cos	θ	+	fyy	r2	cos2	θ.	Thus	by	hypothesis,	|F	(x)	−	F	(y)|	≤	r|x	−	y|.	Thus	by	telescoping,	n	X	(Mj	(f	)	−	mj	(f	))(xj	−	xj−1	)	≤	j=1	n	X	(f	(xj	)	−	f	(xj−1	))kP	k	=	(f	(b)	−	f	(a))kP	k	<	².	A	similar	argument	proves	that	xα	>	y	α	when	α	<	0	and	x	<	y.
Finally,	√	2	√	√	√	A(a,	b)	=	G(a,	b)	if	and	only	if	2	ab	=	a	+	b	if	and	only	if	(	a	−	b)	=	0	if	and	only	if	a	=	b	if	and	only	if	a	=	b.	By	the	Comparison	Test	and	the	p-Series	Test,	the	original	series	diverges.	Since	L(1)	=	0	by	definition	and	L(x)	is	continuous	at	x	=	1,	this	limit	is	of	the	form	0/0.	If	p	>	1	is	finite,	let	q	=	p.	Hence	this	quotient	is	absolutely
integrable	by	the	Comparison	Test.	Since	φ(n	+	1)	=	k0	,	we	conclude	that	φ	takes	{1,	2,	.	By	assumption	iv)	and	part	c),	µ	¶	µ	¶	sin(x	+	h)	−	sin	x	cos	h	−	1	sin	h	=	sin	x	+	cos	x	→	sin	x	·	0	+	cos	x	·	1	=	cos	x	h	h	h	as	h	→	0.	c)	If	1/a	≤	1/b,	then	the	Multiplicative	Property	implies	b	=	ab(1/a)	≤	ab(1/b)	=	a,	a	contradiction.	Hence	the	product	converges
by	the	Comparison	Test.	166	Copyright	©	2010	Pearson	Education,	Inc.	By	construction,	V	(∂E	∪E0	)	<	².	b)	Since	cos(nπ/2)	=	0	if	n	is	odd,	1	if	n	=	4m	and	−1	if	n	=	4m	+	2,	lim	supn→∞	xn	=	1	and	lim	inf	n→∞	xn	=	−1.	a	Since	n	is	even,	xn	≥	0.	Hence	E	is	of	measure	zero.	11.7.9.	a)	By	symmetry,	we	may	suppose	that	each	xj	≥	0.	b)	To	minimize	the
function	F	(a,	b),	as	a	and	b	vary,	we	first	find	the	critical	points	by	setting	∇F	=	0.	Hence	∞	X	(ak+1	−	2ak	+	ak−1	)	=	k=1	∞	X	(ak+1	−	ak	)	+	k=1	∞	X	(ak−1	−	ak	)	=	L	−	a1	+	a0	−	L	=	a0	−	a1	.	e)	By	Theorem	8.9	and	Remark	8.10,	kx	×	z	−	y	×	zk	=	k(x	−	y)	×	zk	≤	2	·	3	=	6.	,	x1	,	x0	}	forms	a	partition	of	[2/(2n+1)π,	2/π].	n→∞	n→∞	k≥n	n→∞	k≥n
n→∞	A	similar	argument	establishes	the	second	identity.	7.5.2.	b)	Let	a	=	3,	b	=	4,	and	f	(x)	=	sin	x.	Thus	∩k∈N	[(k−1)/k,	(k+1)/k)	=	{1}.	Then	Nφ	=	(0,	0,	1)	and	(∇	×	F	)	·	Nφ	=	Qx	−	Py	.	Similarly,	if	|p|	>	1/e,	this	series	diverges	by	the	Ratio	Test.	1.2.1.	a)	If	a	<	b	then	a	+	c	<	b	+	c	by	the	Additive	Property.	,	xN	∈	E	such	that	N	[	E⊂E⊂	Bg(xj	)	(xj	).	,
k0	−	1,	k0	+	1,	.	Choose	(by	Exercise	10.7.6d)	a	polynomial	P	such	that	|f	(x)	−	P	(x)|	<	ε/2	for	all	x	∈	[a,	b],	and	(by	part	b)	a	polynomial	Q,	with	rational	coefficients,	such	that	|Q(x)	−	P	(x)|	<	ε/2	for	all	x	∈	[a,	b].	6.3.6.	a)	Since	akj	≥	0,	0	≤	PN	j=1	akj	≤	N	X	∞	X	j=1	k=1	P∞	akj	=	j=1	akj	=	Ak	for	all	N	∈	N.	By	parts,	Z	e	Z	¯e	f	(x)g	0	(x)	dx	=	f	(x)g(x)	¯0
−	0	e	g(x)f	0	(x)	dx.	d)	False,	beguiling	as	it	seems!	Let	En	=	{0,	1,	.	Therefore,	mn−1	+	pq	−1	=	(mq	+	pn)(nq)−1	.	Therefore,	∞	X	∞	X	akj	=	0	6=	1	=	k=1	j=1	∞	X	∞	X	akj	.	Choose	N	>	kj	such	that	supk≥N	xk	>	r.	9.6.5.	Set	δ	=	x/k.	7.4.10.	2.1.8.	By	Theorem	2.6,	if	xn	→	a	then	xnk	→	a.	,	j.	15.2.6.	Let	U	=	{x	:	x1	>	−a},	V	=	{x	:	x1	<	a},	µ	g(x1	,	.
Since	|H|	=	2²(b2	−	a2	)	.	By	Theorem	2.9i,	h(xn	)	→	L	as	n	→	∞.	Since	A	and	B	are	closed	and	bounded,	use	the	Bolzano-Weierstrass	Theorem	to	choose	subsequences	such	that	xkj	→	x0	∈	A	and	ykj	→	y0	∈	B.	π	12.3.2.	a)	E	=	{(x,	y)	:	0	≤	x	≤	1,	x	≤	y	≤	x2	+	1}	and	Z	1	Z	Z	x2	+1	1	(x	+	1)	dy	dx	=	0	x	(x3	+	1)	dx	=	0	5	.	Conversely,	if	the	integral	on	the
left	is	zero,	then	∆u	dA	=	0	for	all	such	regions	E	⊂	V	.	c)	If	f	(x)	=	x3	−	x	+	5	then	f	0	(x)	=	3x2	−	1,	f	00	(x)	=	6x,	f	(3)	(x)	=	6,	and	f	(k)	(x)	=	0	for	all	k	≥	4.	Hence	it	has	a	convergent	subsequence	by	the	Bolzano–Weierstrass	Theorem.	Then	Nφ	=	(−2u,	−2v,	1)	points	upward,	i.e.,	the	wrong	way.	j=1	9.2.3.	For	each	x	∈	E,	choose	r	=	rx	>	0	and	fx	≥	0
such	that	f	is	C	∞	on	R,	f	(t)	=	1	for	t	∈	Ir	(x)	:=	(x	−	r,	x	+	r),	and	f	(t)	=	0	for	t	∈	/	Jr	(x)	:=	(x	−	2r,	x	+	2r).	2N	sin(u/2N	)	Fix	u	∈	[0,	π]	and	set	g(x)	=	x	sin(u/x)	for	x	>	0.	If	x	=	y,	then	f	(x,	y)	=	sin2	x/(2x2	)	→	1/2	as	x	→	0.	Conversely,	if	xnk	→	a	for	every	subsequence,	then	it	converges	for	the	“subsequence”	xn	.	Since	E	is	polygonally	connected,	there
is	a	continuous	function	f	:	[0,	1]	→	E	with	f	(0)	=	x1	and	f	(1)	=	x2	.	b)	Fix	x	∈	H	o	and	choose	a	rectangle	R	such	that	x	∈	Ro	⊂	H.	10.3.4.	If	A	⊆	B	then	Ao	is	an	open	set	contained	in	B.	It	follows	that	sup	A	≤	sup	B/ε.	Since	f	(x)	is	even,	bk	(f	)	=	0	for	k	∈	N.	Taking	the	supremum	of	this	inequality	over	all	kxk	=	1,	we	obtain	M1	≤	kT	k.	Hence	by	b),	f	/g
:=	f	(1/g)	is	uniformly	continuous	on	E.	4.2.7.	a)	It	is	well-known	that	if	A,	B	∈	R	and	m	∈	N,	then	Am	−	B	m	=	(A	−	B)(Am−1	+	Am−2	B	+	·	·	·	+	AB	m−2	=	B	m−1	).	The	condition	0	<	y	<	x	cannot	be	satisfied	by	the	pair	which	eventuates	when	√	x	takes	the	minus	sign	and	y	the	plus	sign.	Since	f	0	(x)	=	x2−x	(2	−	x	log	2)	<	0	for	all	x	>	2/	log	2,	f	(x)	is
strictly	decreasing	for	x	large.	Set	k	=	n0	+	1.	By	part	a,	f	(xn	)	is	Cauchy,	hence	convergent	since	Y	is	complete.	On	the	other	hand,	∪j=1	Bj	⊆	V	since	each	Bj	⊆	V	.	Then	supk≥n	xk	≤	supk≥N	xk	≤	−M	for	all	n	≥	N	,	i.e.,	lim	supn→∞	xn	=	−∞.	By	the	Extreme	Value	Theorem,	there	is	an	x0	∈	[a,	b]	such	that	f	(x0	)	=	M	.	If	x,	y	∈	Q,	then	(*)	implies	kT
(x,	y0	)k	≤	M	²	·	kx	−	yk	≤	M	²	n|xj	−	yj	|.	b)	If	(a,	b,	c)	∈	K	and	(a/c,	b/c,	−1)	=	t(1,	−1,	1),	then	t	=	−1,	so	a	=	−c	and	b	=	c.	c)	By	Exercises	11.1.8	and	11.1.9,	L{t2	cos	t}	=	L{cos	t}00	(s)	=	(s/(s2	+	1))00	=	((1	−	s2	)/(s2	+	1)2	)0	=	2(s3	−	3s)/(s2	+	1)3	.	b)	By	Exercise	3.1.6,	|f	(x)|	→	|L|	as	x	→	x0	through	E.	Thus	the	trace	looks	like	the	ellipse	sliced	by
the	plane	x	=	z	out	of	the	cylinder	y	2	+	z	2	=	1.	Conversely,	if	g	◦	f	is	1–1	(respectively,	onto),	then	by	parts	a)	and	b),	f	≡	g	−1	◦	g	◦	f	is	1–1	(respectively,	onto).	c)	Since	x0	∈	I	and	F	(I)	⊆	I,	all	xn	’s	belong	to	I.	Hence	f	(x)	cannot	be	improperly	integrable	if	p	≤	1.	Since	U	∩	E	o	is	open	(see	Remark	8.27ii),	there	is	an	r	>	0	such	that	Br	(x)	⊂	U	∩	E	o	⊂
A.	Thus	by	the	Mean	Value	Theorem,	there	is	a	c	∈	(a,	b)	such	that	f	(x)	−	f	(a+)	=	g(x)	−	g(a)	=	g	0	(c)(x	−	a)	=	f	0	(c)(x	−	a).	On	the	other	hand,	if	x	∈	/	[a,	b]	then	(x	−	²,	x	+	²)	∩	[a,	b]	=	∅	for	²	<	min{|x	−	a|,	|x	−	b|}.	3.3.8.	a)	f	(0)	=	f	(0	+	0)	=	f	(0)	+	f	(0)	=	2f	(0)	implies	f	(0)	=	0.	In	particular,	n2	+	3n	=	m2	for	some	m	∈	N.	On	the	other	hand,	by
part	b)	and	Theorem	8.17,	kT	(x)k	≤	M1	kxk.	3.3.4.	Let	g(x)	=	f	(x)	−	x.	k	ak	2n−k	an−k	k	an	2n−k	k=0	k=0	1.4.1.	a)	By	hypothesis,	x1	>	2.	Q(x)	bm	+	·	·	·	+	b0	x−m	If	m	=	n,	then	xn−m	=	1	for	x	6=	0	and	xn−m−k	→	0	as	x	→	±∞	for	all	k	>	0.	n→∞	n→∞	n→∞	n→∞	n→∞	n→∞	2.5.6.	Case	1.	The	ratio	is	less	than	or	equal	to	1/3	for	k	>	N	=	1.	d)	False,
even	if	f	were	positive	on	[a,	b].	14.3	Growth	of	Fourier	Coefficients.	A	p	smooth	C	∞	parameterization	at	these	poles	can	be	given	using	the	trivial	parameterization,	i.e.,	ψ(u,	v)	=	(u,	v,	±c	1	−	u2	/a2	−	v	2	/b2	)	and	B	=	{(u,	v)	:	u2	/a2	+	v	2	/b2	≤	1/2}.	Thus	|	log	x	−	Pn	(x)|	≤	1/(n	+	1)	for	x	∈	[1,	2].	9.4.5.	a)	By	Exercise	8.3.8b,	a	set	E	is	relatively	open
in	some	set	B	if	and	only	if	its	complement	B	\	E	is	relatively	closed	in	B.	t	t	u	1	1	1	e)	L(e)	=	limn→∞	L((1	+	1/n)n	)	=	limn→∞	L(1	+	1/n)/(1/n).	c)	If	E	is	compact,	then	by	part	a),	E	is	sequentially	compact.	Notice	by	hypothesis	that	q	≤	p0	implies	aq	≤	ap0	.	13.2.5.	The	easy	way	is	to	apply	Theorem	12.65	directly.	Since	φ(x)	:=	1	+	x2	is	convex	on	[0,	1],
it	follows	from	the	Fundamental	Theorem	of	Calculus,	Jensen’s	Inequality,	Definition	13.6,	and	the	trivial	√	inequality	1	+	A2	≤	1	+	|A|	that	µZ	1	¶	Z	1	c=φ	f	0	(x)	dx	≤	φ(f	0	(x))	dx	0	0	Z	1	=L≤	Z	1	(1	+	|f	0	(x)|	dx)	=	1	+	0	f	0	(x)	dx	=	a	+	b.	9	Copyright	©	2010	Pearson	Education,	Inc.	Let	curl	(P,	Q,	R)	=	(x	−	2z,	−y,	0).	If	(a,	b,	c)	belongs	to	the	cone,
then	c2	=	a2	+	b2	=	c2	+	b2	,	i.e.,	b	=	0.	Thus	the	expressions	on	the	right	side	of	statement	b)	are	both	well	defined.	c)	We	may	suppose	that	E	=	{(x,	c)	:	a	≤	x	≤	b}.	Thus	P	is	uniformly	continuous	on	R.	Since	1	−	cos	θ	has	a	minimum	at	θ	=	0	and	is	even,	we	have	|1	−	cos(x/k)|	≤	1	−	cos(M/k)	for	(x,	y)	∈	E	and	k	sufficiently	large.	If	f	is	NOT
integrable,	the	symbol	a	f	(x)	dx	makes	no	sense.	10.1.7.	If	xn	is	Cauchy,	then	there	is	an	N	such	that	n	≥	N	implies	σ(xN	,	xn	)	<	1.	d)	It	is	clear	by	construction	that	f	is	increasing	on	[0,	1].	c)	Let	L	=	−∞	and	suppose	without	loss	of	generality	that	M	<	0.	Then	there	exist	points	a	<	c	<	x	<	d	<	b	such	that	f	(x)	lies	above	the	chord	through	(c,	F	(c))
and	(d,	F	(d)).	c)	It	converges	by	the	Root	Test,	since	√	k	ak	≡	k+1	1	→	<	1.	By	the	Extreme	Value	Theorem,	g	is	bounded	on	[a,	b].	Hence	by	assumption	iii),	cos	x	=	1	−	2	sin2	(x/2)	→	1	−	2	sin2	(x0	/2)	=	cos	x0	as	x	→	x0	.	5.5.2.	a)	Fix	k	∈	N.	Notice	that	(x2	+	x	−	2)/(x	−	1)	=	x	+	2	for	every	x	which	satisfies	|x	−	1|	>	0.	Hence	by	the	Sequential
Characterization	of	Continuity,	(f	−1	)√0	is	continuous	at	x0	.	Given	ε	>	0,	choose	N	∈	N	such	that	n	≥	N	implies	ρ(xn	,	a),	ρ(yn	,	a)	<	ε/2.	c)	Since	E	⊂	Z,	given	any	x	∈	R,	(x	−	1/2,	x	+	1/2)	∩	E	contains	at	most	one	point.	8M	Since	f	=	g	on	[t1	,	tN	−1	],	it	follows	from	(*),	U	(f,	P	)	−	L(f,	P	)	=	N	X	(Mj	(f	)	−	mj	(f	))(tj	−	tj−1	)	j=1	≤	2M	(t1	−	t0	)	+	M	.
Therefore,	Ã	n	!	µ	¶	Z	X	1	1	∞	n	−x	1	1	−1	−1	x	e	dx	=	e	+	+	···	+	1	+	1	=	e	.	2	k→∞	1/k	k→∞	e	k→∞	e	lim	P∞	−k	P∞	4	k	But	is	a	geometric	series	which	converges,	so	by	Theorem	6.16ii,	k=1	e	k=1	k	/e	converges.	−3	b)	Let	T	(1,	0,	0,	0)	=	(a,	b,	c).	By	definition,	this	means	x	=	f	(a)	and	f	(a)	∈	E.	Then	supk≥n	xk	=	∞	for	all	n	∈	N	so	by	definition,	lim	sup
xn	=	lim	(sup	xk	)	=	∞	=	s.	(1	−	2k)(−1	−	2k)/(1	·	4	.	8.4.10.	Hence	by	the	Chain	Rule	and	a	one-dimensional	change	of	variables,	we	have	Z	g(ψ(u))kψ	0	(u)k	du	=	J	N	Z	X	k=1	=	g	◦	φ	◦	τ	(u)	|τ	0	(u)|	kφ0	◦	τ	(u)k	du	Jk0	N	Z	X	k=1	Z	0	g	◦	φ(t)	kφ0	(t)k	dt.	¯	¯	¯	0	¯	4	0	π/4	0	Using	the	substitution	t	=	2ax/π,	dt	=	2a/πdx,	this	last	integral	can	be	estimated
by	Z	π/4	e	0	√	−a	2/2	−2ax/π	π	dx	=	2a	Z	a/2	−t	e	0	π	dt	≤	2a	Z	0	∞	e−t	dt	≤	π	.	Since	f	is	continuous,	we	can	choose	a	δ	∈	(0,	δ0	)	such	that	|t	−	t0	|	<	δ	implies	|f	(t)	−	f	(t0	)|	<	ε0	/2.	k=0	f	Pn−1	2	7.4.7.	a)	Fix	x	∈	[−1,	1].	It	almost	looks	connected,	except	that	(−1,	0)	and	(1,	0)	do	not	belong	to	the	set.	If	f	(x)	=	−x2	and	g(x)	=	1,	then	f	(x)	→	0	as	x	→
0+	and	g(x)	≥	1,	but	g(x)/f	(x)	=	−1/x2	→	−∞	as	x	→	0+.	Repeating	the	argument	in	Example	5.12,	we	can	prove	that	f	is	not	integrable	on	[0,	1].	Therefore,	lim	sups→∞	L{f	}(s)	≤	²,	i.e.,	L{f	}(s)	→	0	as	s	→	∞.	Notice	that	kNφ	k	=	k(−x,	−y,	1)k	=	1	+	x2	+	y	2	.	√	d)	Since	log	k	<	k	for	k	large,	k	3	log2	k/ek	<	k	4	/ek	for	k	large.	Its	speed	is	kψ	0	(t)k	=	k(a
cos	t,	−a	sin	t)k	=	a.	b)	If	x	and	y	are	finite,	then	the	result	follows	from	Theorem	2.17.	7.5.1.	Let	f	(x)	=	x3	+	3x2	+	4x	+	1.	Since	Y	is	complete,	it	follows	that	f	(xn	)	→	y	for	some	y	∈	Y	.	Hence	we	see	by	induction	that	f	(nx)	=	f	(x	+	·	·	·	+	x)	=	nf	(x)	holds	for	all	n	∈	Z.	Thus	the	integral	over	C	is	zero.	h→0+	h→0+	h	−h	h	a)	Suppose	that	f	is	odd.	a	b)	By
Exercise	10.7.6d,	choose	polynomials	PN	which	converge	to	f	uniformly	on	[a,	b]	as	N	→	∞.	Since	f	and	φ	are	1–1,	ψ(x)	=	ψ(y)	implies	φ(x)	=	φ(y)	implies	x	=	y.	7.4.5.	We	begin	with	a	general	observation.	If	the	second	case	holds,	then	[	H⊆	Bra	(a).	3.1.9.	Let	½	ε	=	min	M	−	f	(a)	f	(a)	−	m	,	2	2	¾	.	Since	y	=	1	±	x	are	lines	with	y-	intercept	1,	it	is	easy	to
see	that	this	ball	is	a	diamond	with	vertices	(1,	0),	(0,	1),	(−1,	0),	and	(0,	−1).	d)	limx→0+	log(1	−	x2	)/x	=	limx→0+	(1	−	x2	)−1	(−2x)/1	=	limx→0+	−2x/(1	−	x2	)	=	0.	On	the	other	hand,	if	m	>	n,	then	xn−m	→	0	as	x	→	±∞	too.	c)	Let	ε	>	0	and	set	δ	:=	min{1,	ε/9}.	Thus	the	trace	of	φ(t)	is	asymptotic	to	the	x	axis	as	t	→	0.	5.4.9.	Integrating	by	parts	and
applying	L’Hˆopital’s	Rule,	we	obtain	Z	∞	Z	∞	n	−x	−1	x	e	dx	=	e	+	nxn−1	e−x	dx	=	.	Thus	U	(f,	Pn	)	−	L(f,	Pn	)	=	1	1	2	+	=	→0	n	n	n	as	n	→	∞,	so	f	is	integrable	by	Definition	5.9.	Since	U	(f,	Pn	)	=	n	1	X	k	2n	−	n	1	1	=	→	n	2n	2	k=n/2	as	n	→	∞,	R1	0	f	(x)	dx	=	1/2.	Then	P	(x)	an−2	a0	=	an	x	+	an−1	+	+	n−1	→	∞	xn−1	x	x	as	x	→	∞,	i.e.,	P	(x)	→	∞	as	x	→
∞.	n	α	α	If	α	≤	0	and	xn	=	2/((2n	+	1)π)	then	xα	n	sin(1/xn	)	=	(−1)	xn	does	not	converge	as	n	→	∞,	i.e.,	x	sin(1/x)	α	has	no	limit	as	x	→	0+.	4sx	4ty	2sx	−2ty	112	Copyright	©	2010	Pearson	Education,	Inc.	Suppose	that	cn−1	−	bn−1	=	1	and	=	c2n−1	hold	for	some	n	≥	0.	Moreover,	the	function	f	has	first-order	partial	derivatives	at	(0,	0),	since	∂f	f	(h,	0)
−	f	(0,	0)	h3	(0,	0)	=	lim	=	lim	3	=	1,	h→0	h→0	h	∂x	h	and	∂f	f	(0,	h)	−	f	(0,	0)	0	(0,	0)	=	lim	=	lim	3	=	0.	By	hypothesis,	ak+1	≤	a2k	for	all	k	∈	N.	Moreover,	by	the	Borel	Covering	Lemma,	there	exist	relative	closed	balls	Exj	such	that	E	=	∪Exj	.	Then	by	Exercise	1.2.5d,	3	<	xn+1	<	xn	.	The	inverse	is	f	−1	(x)	=	arctan(x	−	π).	Hence	by	the	Generalized
Mean	Value	Theorem,	for	each	x	∈	[a,	b]	there	exists	a	c	between	a	and	x	such	that	f	0	(c)(f	−1	(x)	−	f	−1	(a))	=	(f	−1	)0	(c)(f	(x)	−	f	(a)).	Since	sin(x	+	π)	=	−	sin	x,	we	have	by	Taylor’s	formula	that	¯	3¯	¯	δ	¯	δ3	|	sin(x	+	π)	+	δ|	=	|δ	−	sin	δ|	=	|	−	cos	c|	¯¯	¯¯	≤	.	3	(2k	−	1)	(2k	+	1)3	0	k=1	k=0	7.2.5.	Since	|	sin(x/(k	+	1))/k|	≤	|x|/(k(k	+	1)),	the	series
converges	uniformly	on	any	closed	bounded	interval	[a,	b]	by	the	Weierstrass	M–Test.	Since	|xN	−	yN	|	=	δ/2	<	δ,	we	have	1=	2	|xN	−	yN	|	<	|xN	−	yN	|	|Q(xN	,	yN	)|	=	|P	(xN	)	−	P	(yN	)|	<	²	δ	a	contradiction.	−2/17	3/17	b)	Since	f	(u,	v)	=	(0,	1)	implies	u	=	(2k	+	1)π/2	or	u	=	2kπ,	k	∈	Z	and	·	Df	(u,	v)	=	we	have	¸	1	1	,	cos	u	−	sin	v	·	D	−1	1	1	f	(0,	1)	=
1	0	or	·	D−1	f	(0,	1)	=	1	1	0	1	¸−1	·	¸	0	1	=	,	1	−1	¸−1	·	=	¸	1	−1	.	In	R2	,	an	`∞	ball	at	the	origin	is	{(x,	y)	:	max{|x|,	|y|}	<	1},	i.e.,	|x|	≤	1	and	|y|	≤	1.	To	parameterize	C1	,	let	φ(t)	=	(1	−	t,	0,	t)	and	I	=	[0,	1].	2	a	−	x1	a	+	x1	a	−	x1	k=1	|gk	(x)|	It	follows	that	h	◦	g	−1	(u)	=	u	.	Set	δ	=	min{−1/(2M	),	1}.	In	particular,	x	∈	∂A.	Then	by	definition,	∂D(`−1)	f
∂D(`−1)	f	(a,	b)h	+	(a,	b)k	∂x	∂y	¶	`−1	µ	X	`−1	∂`f	=	(a,	b)hj+1	k	`−1−j	j+1	`−1−j	j	∂x	∂y	j=0	D(`)	f	((a,	b);	(h,	k))	=	+	¶	`−1	µ	X	`−1	j	j=0	=	`	µ	¶	X	`	j=0	j	∂`f	∂xj	∂y	`−j	∂`f	(a,	b)hj	k	`−j	∂xj	∂y	`−j	(a,	b)hj	k	`−j	.	c)	It	converges	absolutely	for	all	|p|	<	1/e	by	the	Ratio	Test,	since	¯	¯	¯	¯	µ	¶k	¯	(p(k	+	1))k	/(k	+	1)!	¯	¯	p(k	+	1)k+1	¯	¯	¯=¯	¯	=	|p|	k	+	1	→	|p|e
<	1	¯	¯	¯	(k	+	1)k	k	¯	(pk)k	/k!	k	63	Copyright	©	2010	Pearson	Education,	Inc.	3	b)	Let	ε	>	0	and	let	δ	=	ε/4.	If	A	=	0,	then	f	(x)	=	f	(x)	−	f	(a)	=	f	0	(c)(x	−	a)	6=	0,	and	if	A	=	∞,	then	f	(x)	is	large,	hence	also	nonzero	for	large	x.	0	13.6.2.	a)	The	boundary	of	S	has	two	smooth	pieces.	Thus	Rx	=	y	+	√	fx	and	we	can	set	f	=	0,	P	=	0,	and	g	=	0.	Therefore,	E
is	not	connected.	By	i),	either	a	−	b	∈	P,	b	−	a	=	−(a	−	b)	∈	P,	or	a	−	b	=	0.	h→0	h	h	Thus	F	is	a	differentiable	real	function	on	[0,	1],	and	it	follows	from	the	one-dimensional	Mean	Value	Theorem	that	f	(a	+	u)	−	f	(a)	=	F	(1)	−	F	(0)	=	F	0	(t)	=	f	(a	+	tu)	for	some	t	∈	(0,	1).	We	conclude	by	Stokes’s	Theorem	that	ZZ	Z	2π	F	·	n	dσ	=	(16	−	2)	dt	=	28π.	,	n}
into	{1,	2,	.	Finally,	it	is	easy	to	verify	that	if	x0	=	`	for	`	=	−1	or	0,	then	xn	=	`	for	all	n,	hence	xn	→	`	as	n	→	∞.	The	series	associated	with	ak	=	(−1)	and	bk	=	(−1)k+1	both	diverge,	but	k=1	(ak	+	bk	)	=	k=1	0	=	P∞	P∞	P∞	P∞	True.	Thus	by	induction,	2	<	xn+1	<	xn	for	all	n	∈	N.	−π	d)	By	the	given	inequality	and	part	c),	∞	X	n	(|ak	(f	)|	+	|bk	(f	)|)	=	∞
2X	−1	X	(|ak	(f	)|	+	|bk	(f	)|)	n=1	k=2n−1	k=1	≤	∞	X	Ã	n/2	2	n=1	≤	n	2X	−1	!1/2	(a2k	(f	)	+	b2k	(f	))	k=2n−1	∞	M	π	α	X	n(1/2−α)	2	.	Let	²	>	0	be	so	small	that	[x0	−	²,	x0	+	²]	⊂	(c,	d).	b)	Let	x0	∈	R.	It’s	true	for	n	=	1.	0	Therefore,	L{f	}0	(s)	=	−L{tf	(t)}(s).	2Vol	(E)	Rj	∩E6=∅	Rj	⊆E\E0	Therefore,	f	is	integrable	on	E.	Let	δ	>	0.	Using	f	(a)f	(a	+	h)	as	a
common	denominator	and	the	definition	of	T	,	we	have	1	1	f	(a)	−	f	(a	+	h)	−	f	(a)f	(a	+	h)T	(h)	−	−	T	(h)	=	f	(a	+	h)	f	(a)	f	(a)f	(a	+	h)	f	(a)	−	f	(a	+	h)	+	Df	(a)(h)f	(a	+	h)/f	(a)	=	f	(a)f	(a	+	h)	f	(a)	−	f	(a	+	h)	+	Df	(a)(h)	(f	(a	+	h)	−	f	(a))Df	(a)(h)	=	+	f	(a)f	(a	+	h)	f	2	(a)f	(a	+	h)	=:	I1	+	I2	.	U	(f,	P	)	=	0.5f	(0.5)	+	0.5f	(1)	+	f	(2)	≈	0.5386697.	By	pinduction,	f
(nx)	=	f	(x	+	·	·	·	+	x)	=	f	(x)	for	n	∈	N.	Indeed,	let	f	(x)	=	x	+	2,	g(x)	=	x,	and	[a,	b]	=	[−1,	1].	Let	²	>	0	and	set	δ	=	²/(|m|	+	1).	c)	By	definition,	¯∞	½	Z	∞	−e−xy	¯0	=	1	y>0	−xy	ye	dx	=	0	y	=	0.	By	definition,	g(x)	→	∞	as	x	→	a.	2	2	2	b)	The	formula	holds	for	n	=	1.	Then	f	(x)	∈	f	(A)	so	f	(x)	=	f	(a)	for	some	a	∈	A.	Thus	|a	·	(b	×	c)|	+	|a	·	b|	≤	1.	c)	Suppose	f
is	convex.	Hence	f	(x)	cannot	be	continuous	at	x	=	1.	Hence	by	the	Intermediate	Value	Theorem,	there	is	a	c	∈	[a,	b]	such	that	h(c)	=	0,	i.e.,	such	that	f	(c)	=	g(c).	Thus	f	is	uniformly	continuous	on	(a,	b)	by	Theorem	3.40.	Hence	by	Taylor’s	Formula,	h2	h2	w(x2	+	h,	t2	)	=	w(x2	,	t2	)	+	wxx	(x2	,	t2	)	+	(wxx	(c,	t2	)	−	wxx	(x2	,	t2	))	2	2	for	some	c	between
x2	and	x2	+	h.	a)	By	Exercise	11.6.9,	the	normal	of	H	at	(a,	b,	c)	is	parallel	to	∇F	=	(2x,	2y,	−2z).	A	similar	estimate	holds	for	the	sine	terms.	c)	To	show	f	(f	−1	(E))	=	E,	let	x	∈	E.	Therefore,	X	is	not	connected.	Therefore,	Br	(x)	⊆	U	and	U	is	open.	Let	φ(t)	=	(t,	f	(t))	and	ψ(u)	=	(f	−1	(u),	u).	b)	Let	x	∈	X.	n	Thus	if	N	is	so	big	that	n	≥	N	implies	|N0	L	+	f
(N0	)|/n	<	ε/2,	then	the	estimate	above	can	be	continued	as	|f	(n)/n	−	L|	<	ε/2	+	ε/2	=	ε.	In	particular,	the	pair	U	,	V	separates	E,	a	contradiction.	b)	By	the	definition	of	B0	,	it	is	clear	that	f	takes	A	onto	B0	.	Similarly,	div	curl	F	=	(F3	)yx	−	(F2	)zx	+	(F1	)zy	−	(F3	)xy	+	(F2	)xz	−	(F1	)yz	=	0.	c)	Since	((k	+	2)k+1	/(pk+1	(k	+	2)!))/((k	+	1)k	/(pk	k!))	=	((k
+	2)/(k	+	1))k+1	·	(1/p)	→	e/p	as	k	→	∞	and	e/p	<	1,	this	series	√	converges	absolutely	by	the	Ratio	Test.	In	particular,	f	(X)	⊂	{f	(x1	),	.	Hence	by	induction,	P	(k)	exists	for	all	k	∈	N	(and	in	fact	is	evidently	zero	for	large	k).	If	a	=	0,	then	the	limit	is	zero	for	all	x,	so	by	the	Root	Test	the	series	converges	absolutely	for	all	x	∈	R.	Moreover,	if	k=1	ak
converges,	P∞then	it	surely	has	bounded	partial	∞	sums.	Hence	by	Stokes’s	Theorem,	¯	¯	Z	¯	1	¯	¯	¯	F	·	T	ds	−	(∇	×	F	)(x	)	·	n	0	¯	σ(Sr	)	¯	∂Sr	¯	¯	ZZ	¯	1	¯	¯	=¯	(∇	×	F	)(x)	·	n	dσ(x)	−	(∇	×	F	)(x0	)	·	n¯¯	σ(Sr	)	S	ZZ	r	1	≤	|((∇	×	F	)(x)	−	(∇	×	F	)(x0	))	·	n|	dσ	<	².	σ(Sr	)	Sr	In	particular,	R	∂Sr	F	·	T	ds/σ(Sr	)	→	(∇	×	F	)(x0	))	·	n	as	r	→	0.	Since	yn	is	bounded
above	(by	x0	),	we	conclude	that	yn	→	y	as	n	→	∞	for	some	y	∈	R.	x∈E	Since	E	is	closed	and	bounded,	we	conclude	by	the	Heine-Borel	Theorem	that	there	exist	x1	,	.	Therefore,	f	/g	is	uniformly	continuous	on	[a,	b]	by	Exercise	3.4.5d.	c)	By	part	b)	and	hypothesis,	if	f	(x)	=	ax	,	then	ax+h	−	ax	ah	−	1	=	ax	lim	=	ax	·	1	=	ax	.	Thus	dL/L	=	2dT	/T	+	dg/g.
Hence	an	equation	of	the	plane	is	given	by	((b	−	a)	×	(c	−	a))	·	(x,	y,	z)	=	((b	−	a)	×	(c	−	a))	·	a.	b)	Let	r	=	ρ(a,	b)/2.	Thus	f	belongs	to	Lip	1.	Hence	the	series	converges	by	the	Comparison	Test	and	the	p-Series	test.	For	example,	if	k=1	(ak	+	bk	)	and	k=1	ak	converge,	then	k=1	bk	=	k=1	(ak	+	bk	−	ak	)	=	Pc)	P	∞	∞	(a	+	b	)	−	a	converges	by	Theorem
6.10.	∂E	E	13.5.10.	9.3.4.	Let	a	∈	Rn	.	an	·	a2j	j=1	is	1	if	n	is	odd,	and	0	if	n	is	even.	By	L’Hˆopital’s	Rule,	this	sequence	converges	to	e−x	as	k	→	∞	for	all	x	∈	R.	Since	it	is	nonempty,	it	follows	from	the	Completeness	Axiom	that	E	has	a	finite	supremum.	If	a	=	0,	b	=	0,	or	|a|	=	|b|,	then	(|a|	+	|b|)β	≥	|a|β	+	|b|β	(*)	obviously	holds.	Since	f	is	a	finite	sum	of
C	y	∈	Br(xj	)	(xj	)	for	some	j.	Hence	E	is	an	interval,	so	connected	by	Theorem	10.56.	Combining	these	statements,	if	q	∈	Q	then	q	=	n/m	so	³n	´	³x´	n	f	x	=	nf	=	f	(x)	=	qf	(x)	m	m	m	for	x	∈	R.	¯	¯	¯	k=m	Since	an	→	0	and	P∞	k=1	6.4.7.	Let	cn	:=	By	Abel’s	Formula,	n	X	P∞	k=m	|ak+1	−	ak	|	<	∞,	it	follows	that	k=n	ak	=	k=m	P∞	k=1	ak	bk	is	Cauchy,
hence	convergent.	4.4.0.	a)	False.	,	br1	=	−ar1	−k1	,	br1	+1	=	ak1	+1	,	.	Hence,	(φ,	[a,	b])	and	(ψ,	[−f	(a),	−f	(b)]))	are	orientation	equivalent.	1.6.0.	a)	False.	b)	The	statement	is:	If	f	is	differentiable	on	(a,	b)	and	has	a	proper	local	minimum	at	x0	,	then	f	0	(x0	)	=	0	and	given	δ	>	0	there	exist	x1	<	x0	<	x2	such	that	f	0	(x1	)	<	0,	f	0	(x2	)	>	0,	and	|xj	−
x0	|	<	δ	for	j	=	1,	2.	Thus	the	desired	identity	follows	from	setting	A	=	xq	and	B	=	aq	,	where	q	=	n/m.	e)	This	is	the	set	of	points	on	the	circle	(x	−	1)2	+	y	2	=	1	or	on	the	x	axis	between	x	=	2	and	x	=	3.	Hence	f	is	uniformly	continuous	on	E.	It	is	evidently	connected.	By	Theorem	3.40,	f	is	uniformly	continuous	on	[0,	N	].	It	also	is	connected	because	it
cannot	be	broken	into	disjoint	open	pieces.	Since	A	∩	B	=	∅,	x0	6=	y0	.	Also,	f	0	(x)	=	x2	(2xex	)	+	2xex	=	2	2xex	(x2	+	1)	>	0	when	x	>	0,	so	f	is	strictly	increasing,	hence	1–1	on	(0,	∞).	A	similar	argument	works	for	b	<	0.	In	particular,	|an	+	bn	|	diverges	to	∞.	Since	(x,	y)	∈	R	implies	k(x,	y)k	≤	|x|	+	|y|	≤	max{|a|,	|b|}	+	max{|c|,	|d|},	R	is	bounded.
Since	these	functions	have	no	common	zero,	this	function	has	no	local	extrema.	Thus	by	Taylor’s	Formula,	there	is	an	x1	between	a	and	c	such	that	(c	−	a)n	f	(c)	=	f	(n)	(x1	)	n!	and	an	x2	between	b	and	c	such	that	f	(c)	=	f	(n)	(x2	)	(c	−	b)n	.	For	the	boundary,	let	x	=	2	cos	θ	and	y	=	sin	θ.	Suppose	kν	∈	N	have	been	chosen	so	that	k1	<	k2	<	·	·	·	<	kj
and	xkν	>	r	for	ν	=	1,	2,	.	6.4.2.	a)	By	the	Ratio	Test,	this	series	converges	for	all	|x|	<	1	and	diverges	for	all	|x|	>	1.	9.5.1.	a)	Since	1/k	→	0	as	k	→	∞,	this	set	is	closed	and	bounded,	hence	compact.	Let	M	be	the	maximum	of	f	on	[a,	b].	Applying	the	Mean	Value	Theorem	to	f	0	,	there	is	a	c	∈	(c1	,	c2	)	such	that	0	<	f	0	(c2	)	−	f	0	(c1	)	=	(c2	−	c1	)f	00	(c).
Then	{Vα	}α∈A	is	an	open	covering	of	H.	c)	Let	θs	represent	the	angle	between	ν	0	(s)	and	ν	0	(s0	)	and	suppose	for	simplicity	that	s	>	s0	.	k→∞	E	E	12.2.5.	Let	²	>	0	and	choose	M	>	0	such	that	|f	(x)|	≤	M	for	all	x	∈	E.	84	Copyright	©	2010	Pearson	Education,	Inc.	Similarly,	fy	(0,	0)	=	0.	xn	=	1/n	converges	to	0	and	yn	=	n2	>	0,	but	xn	yn	=	n	does	not
converge.	c)	Since	(π	k+1	/(k	+	1)!)/(π	k	/k!)	p	=	π/(k	+	1)	→	0	as	k	→	∞,	this	series	converges	by	the	Ratio	Test.	}	then	let	Rj	be	a	rectangle	which	contains	xj	such	that	|Rj	|	<	²/2j	.	By	Green’s	Theorem	and	hypothesis,	Z	Z	ZZ	F	·	T	ds	−	F	·	T	ds	=	C1	(Qx	−	Py	)	dA	=	0.	Hence	by	the	Transitive	Property,	ac	<	bd.	Let	(x,	y)	be	a	point	on	the	line	segment
between	(x1	,	y1	)	and	(x2	,	y2	),	and	(x,	y	∗	)	be	a	point	on	the	chord	from	(x1	,	f	(x1	))	to	(x2	,	f	(x2	)).	Conversely,	suppose	E	o	=	∅.	Since	tan3	θ	=	tan	θ(sec2	θ	−	1),	it	follows	that	Z	π/4	0	1	tan	θ	sec	θf	(sec	θ)	dθ	=	2	3	2	Z	2	2	(u	−	1)f	(u)	du	=	1	1	1	(2	−	3)	=	−	.	48	Copyright	©	2010	Pearson	Education,	Inc.	If	it	holds	for	some	n	∈	N	then	by	Taylor’s
Formula,	|f	(xn	)|	=	|f	(xn	)	−	f	(xn−1	)	+	f	(xn−1	)|	=	|f	(xn	)	−	f	(xn−1	)	−	f	0	(xn−1	)(xn	−	xn−1	)|	≤	M	|xn	−	xn−1	|2	.	7.2.2.	Clearly,P|xk	|	≤	rk	for	x	∈	[a,	b]	and	r	=	max{|a|,	|b|}.	c)	Use	u-substitution.	Since	U	is	open	it	follows	that	E	∩	U	6=	∅,	a	contradiction.	By	the	Chain	Rule,	Fx	=	u0	(w)x/w,	Fy	=	u0	(w)y/w,	and	Fz	=	u0	(w)z/w.	Moreover,	ψ	=	φj
◦	τ	on	((j	−	1)/N,	j/N	).	2.5	Limits	supremum	and	infimum.	Hence	|xn	yn	−	(xm	ym	)|	≤	|xn	−	xm	|	|ym	|	+	|xn	|	|yn	−	ym	|	<	ε	for	n,	m	≥	N	.	Therefore,	there	exists	a	finite	subset	A0	of	A	such	that	{H	∩	Vα	}α∈A0	covers	H.	9.3.6.	a)	We	begin	by	proving	that	if	g(x,	y)	:=	f	(x)	and	f	(x)	→	f	(a)	as	x	→	a,	then	g(x,	y)	→	f	(a)	as	(x,	y)	→	(a,	b)	no	matter	what	b
is.	155	Copyright	©	2010	Pearson	Education,	Inc.	Hence	Γ00	≥	0,	and	we	conclude	by	Theorem	5.61	that	Γ	is	convex	on	(0,	∞).	Its	iterated	integrals,	however,	are	not	equal.	3.3.7.	If	g	is	continuous	at	a	then	so	is	f	+	g	by	Theorem	3.8.	Conversely,	if	f	and	f	+	g	are	continuous	at	a	then	so	is	g	=	(f	+	g)	−	f	.	2.2.7.	a)	By	Theorem	2.9	we	may	suppose
that	|x|	=	∞.	The	converse	is	trivial.	By	definition,	n	X	n	X	∂2f	D(2)	f	(c;	x	−	a)	=	(c)(xi	−	ai	)(xj	−	aj	).	By	Theorem	4.18,	0	≤	f	(x0	−)	<	f	(x0	+)	≤,	i.e.,	(f	(x0	−),	f	(x0	+))	⊆	[0,	1]	but	(f	(x0	−),	f	(x0	+))	∩	f	([0,	1])	=	∅.	Set	M	:=	max{sup	A,	sup	B}	and	observe	that	M	is	an	upper	bound	of	both	A	and	B.	Solving	for	the	integral,	we	obtain	0	e−st	sin	bt	dt	=
b/(s2	+	b2	).	To	evaluate	the	integral	over	T1	,	let	φ(y,	z)	=	(0,	y,	z)	and	E	be	the	triangle	with	vertices	(0,	0,	0),	(0,	1,	0),	and	(0,	0,	1).	Let	²	>	0.	By	repeating	the	argument	in	part	c),	but	looking	for	lower	estimates	√	e²	|Qj	|	for	this	time,	we	can	show	that	S	◦	φ(Q)	contains	a	cube	with	sides	s(1	−	²	nM	),	so	Vol	(S	◦	φ(Qj	))	≥	C	e	some	constants	C²	→	1
as	²	→	0.	Since	kNφ	k	=	k(f	(u)f	0	(u),	−f	(u)	cos	v,	−f	(u)	sin	v,	)k	=	|f	(u)|	p	1	+	(f	0	(u))2	,	141	Copyright	©	2010	Pearson	Education,	Inc.	8.1.6.	a)	(4,	5,	6)	−	(1,	2,	3)	=	(3,	3,	3),	(0,	4,	2)	−	(1,	2,	3)	=	(−1,	2,	−1),	and	(3,	3,	3)	·	(−1,	2,	−1)	=	0,	so	the	sides	of	this	triangle	emanating	from	(1,	2,	3)	are	orthogonal.	5	1+x	b)	By	Theorem	7.33	and	Example
7.45,	ex	=	1+x	Ã	∞	X	xk	k=0	!Ã	k!	∞	X	!	k	k	(−1)	x	=	k=0	∞	X	k=0	æ	è	k	X	(−1)k−j	j=0	j!	ö	ø	xk	for	|x|	<	1.	P∞	Set	f	(x,	y)	=	k=1	(φk	(x)−φk+1	(x))	φk	(y),	and	note	that	f	is	continuous	in	each	variable.	Case	1.	(Note:	Because	the	boundary	of	[a,	b]	contained	only	isolated	points,	this	and	the	Sequential	Characterization	of	Limits	was	enough	to	conclude
that	g	was	continuous	on	X.	Let	P	(x)	=	an	xn	+	·	·	·	+	a0	and	Q(x)	=	bm	xm	+	·	·	·	+	b0	,	where	m	≥	n.	4.5.0.	a)	False	because	I	need	not	be	an	interval.	Hence	the	claim	holds	for	n	=	1.	Given	²	>	0	choose	δ	>	0	such	that	x,	y	∈	E	and	|x	−	y|	<	δ	imply	|f	(x)	−	f	(y)|	and	|g(x)	−	g(y)|	<	²/(2M	).	If	x,	y	∈	E	and	|x	−	y|	<	δ	then	|(f	+	g)(x)	−	(f	+	g)(y)|	≤	|f	(x)
−	f	(y)|	+	|g(x)	−	g(y)|	0	and	both	|f	(x)|	and	|g(x)|	are	less	than	M	for	x	∈	E.	Suppose	it	holds	for	some	all	k	∈	[0,	j]	for	some	j	≥	0.	Since	|x	−	rn	|	<	1/n,	it	follows	from	the	Squeeze	Theorem	that	rn	→	x	as	n	→	∞.	e)	Since	E	⊂	N,	it	has	no	cluster	points.	Since	α	>	0,	we	also	have	Rj	∩	(αE)	6=	∅	if	and	only	if	(1/α)Rj	∩	E	6=	∅.	Notice	that	f	0	(t)	=	g(t)/(t	+
x)2	and	g	0	(t)	=	−x/t2	−	1/t.	Hence	{xn	}	is	Cauchy	and	must	converge	by	Theorem	2.29.	4.2.8.	Clearly,	f	0	(x)	exists	when	x	6=	0.	,	13.3.9.	Let	(x,	y,	z)	=	φ(u,	v)	and	(u,	v)	=	ψ(t).	Then	Z	Z	F	·	T	ds	=	C(x)	Z	x	P	dx	+	Q	dy	=	C(x)	P	(u,	y)	du	+	0.	x2	+	y	2	−	2x	−	2y	+	2	(x,y)→(1,1)	y	2	+	1	9.3.2.	a)	The	iterated	limits	are	0.	P2k	6.1.8.	a)	Since	the	ak	’s	are
decreasing,	ka2k	=	a2k	+	·	·	·	+	a2k	≤	ak+1	+	ak+2	+	·	·	·	+	a2k	=	j=k+1	aj	.	Let	s	=	inf	n∈N	(supk≥n	xk	).	By	the	density	of	rationals,	there	are	many	q	∈	Q	such	that	q	<	x.	Therefore,	Rb	a	n	X	k=0	Z	b	ak	f	(x)xk	dx	=	0	a	f	2	(x)	dx	=	0.	P∞	P∞	0	<	q	≤	1	then	1/q	k	≥	1	so	k=1	(kq	k	)−1	≥	k=1	1/k	=	∞	diverges.	109	Copyright	©	2010	Pearson
Education,	Inc.	On	the	other	hand,	it	is	easy	to	see	by	parts	that	Z	1	π	2	bk	(f	)	=	x	sin	kx	dx	=	−	π	π	k	for	k	∈	N.	c)	False.	10.6.5.	By	Theorem	10.62,	f	(E)	is	connected	in	R.	On	the	other	hand,	√	(	k/(k	+	1))/(1/	k)	=	k/(k	+	1)	→	1	as	k	→	∞.	b)	Let	f	=	1,	n	=	1,	and	[a,	b]	=	[−1,	1].	¯≤	¯	k(k	+	1)	¯	k(k	+	1)	k=1	k=1	P∞	7.2.6.	The	series	f	(x)	:=	k=1	sin(x/k)/k
converges	uniformly	on	[0,	1]	by	the	Weierstrass	M–Test.	c)	Since	(2k+1	/(k	+	1)!)/(2k	/k!)	=	2/(k	+	1)	→	0	as	k	→	∞,	this	series	converges	by	the	Ratio	Test.	17	Copyright	©	2010	Pearson	Education,	Inc.	Thus	the	graph	of	y	=	a2	−	x2	is	a	semicircle	centered	at	the	origin	of	radius	a.	x	b)	Let	u	=	ex	and	dv	=	f	0	(x)	dx.	But	xnk	→	0	when	x	∈	[0,	1)	and	to
1	when	x	=	1.	It	follows	from	Remark	9.38	that	A	∩	B	is	compact.	4.5.3.	Let	f	(x)	=	sin	x.	The	longest	diagonal	of	this	cube	is	x	:=	(b,	b,	.	64	Copyright	©	2010	Pearson	Education,	Inc.	c)	False,	but	it’s	not	a	l’Hˆopital	problem.	P∞	9.6.2.	By	the	Extreme	Value	P∞Theorem,	f1	is	bounded	on	E	and	by	Dini’s	Theorem,	k=1	gk	=	g	uniformly	on	E.	Hence	by
the	Comparison	Test,	∞	X	N	X	akj	≤	k=1	j=1	∞	X	Ak	=	k=1	∞	X	∞	X	akj	.	In	particular,	f	is	differentiable	at	(0,	0).	Hence	by	part	b),	DR	f	(x)	≤	0	for	uncountably	many	x	∈	(c,	d)	⊂	(a,	b),	a	contradiction.	9.2.7.	a)	Since	both	sets	are	nonempty	and	kx	−	yk	is	bounded	below	by	0,	the	dist	(A,	B)	exists	and	is	finite.	Hence	by	the	Heine-	Borel	Theorem,	E	is
compact.	k	Let	a,	b	∈	R.	d)	By	l’Hˆopital’s	Rule,	(1	−	x2	)1/x	→	1	as	x	→	0+.	Therefore,	does	not	converge	uniformly	on	[0,	1].	We	claim	that	|xn	−	xn−1	|	<	r0n+1	for	n	∈	N.	d)	If	k=0	ak	does	not	converge,	then	k=0	ak	=	∞.	5.1.2.	a)	The	points	are	obviously	increasing,	beginning	with	0/n	=	0	and	ending	with	n/n	=	1.	4.2.0.	a)	True.	,	hence	|ak	|	≤	|aN
|xk−N	for	any	k	>	N	.	Since	pf	is	continuous,	it	is	locally	integrable	on	(a,	b).	Since	D	=	12y	−	1,	we	see	that	f	(1/3,	2/3)	=	−13/27	is	a	local	minimum	and	(−1/4,	−1/2)	is	a	saddle	point.	1≤k≤n	1≤k≤n	1≤k≤n	8.2	Planes	and	Linear	Transformations.	Indeed,	if	yn	also	converges	to	a,	then	ρ(xn	,	yn	)	<	δ	for	large	n,	so	τ	(f	(xn	),	f	(yn	))	<	²	for	large	n.	fnjn
(x)	=	xj11	.	Then	y	2	+	z	2	=	sin2	t	+	cos2	t	=	1	and	x	=	z.	c)	1/(2n	+	1)!	≤	0.00000005	implies	(2n	+	1)!	≥	20,	000,	000.	Thus	we	can	parameterize	∂S	by	φ(t)	=	(cos	t,	sin	t/	2,	sin	t/	2),	t	∈	[0,	2π].	d)	Let	G(f	)	represent	the	graph	of	y	=	f	(x)	as	x	varies	over	[a,	b].	Conversely,	if	xk	belongs	to	any	relatively	open	set	for	large	k	then,	since	U	=	E	∩	Bε	(a)	is
relatively	open	in	E	and	contains	a,	xk	∈	U	⊆	Bε	(a)	for	large	k,	i.e.,	xk	→	a	as	k	→	∞.	P∞	k=0	xk	/k!	=	E(x).	Since	f	0	(x)	>	0	when	x	<	e1/α	and	f	0	(x)	<	0	when	x	>	e1/α	,	Cα	:=	f	(e1/α	)	=	1/(αe)	is	the	absolute	maximum	of	f	on	[1,	∞).	xn	+	yn	Hence,	{xn	}	is	decreasing	and	bounded	below	(by	1).	Therefore,	sup	f	(E)	≥	f	(xk	)	for	all	k	implies	sup	f	(E)	≥
f	(sup	E).	Thus	P	satisfies	ii).	c)	If	p	=	0,	the	series	obviously	doesn’t	make	sense,	so	we	can	suppose	that	p	6=	0.	If	n	≥	N	,	then	|x	+	yn	−	x|	=	|yn	|	<	δ,	so	|fn	(x)	−	f	(x)|	=	|f	(x	+	yn	)	−	f	(x)|	<	ε.	Thus	the	series	ak	/(k	+	1)p	has	nonnegative	terms	and	is	dominated	by	M/k	p	.	A	direct	calculation	yields	y6	>	3.141557494	and	x7	<	3.14161012.	0=	lim
11.2.8.	Since	T	is	linear,	kT	(a	+	h)	−	T	(a)	−	T	(h)k	kT	(a)	+	T	(h)	−	T	(a)	−	T	(h)k	0	=	≡	=	0.	27	p	0	2	√	c)	Since	φ(t)	=√t	(1,	1,	1),	this	curve	is	the	straight	line	from	(0,	0,	0)	to	(4,	4,	4).	b	>	x	>	b	−	δ	implies	|g(x)|	<	²/M	.	A	similar	argument	establishes	bk	(f	0	)	=	−kak	(f	).	Since	f	0	(c)	6=	0,	it	follows	that	f	(x2	)	6=	f	(x1	),	i.e.,	that	f	is	1–1	on	I.	If	xn
converges,	then	there	is	an	M	>	0	such	that	|xn	|	≤	M	.	0	12.1.5.	a)	Notice	by	definition	that	E	=	E	0	and	E	0	=	E.	If	>	M	.	log(log	k))p	log	k	e	k	e	Thus	the	original	series	converges	by	the	Comparison	Test.	E	b)	If	x	=	3t/(1	+	t3	)	and	y	=	3t2	/(1	+	t3	),	then	xdy	−	ydx	=	3t	3(1	−	2t3	)	dt	3t2	3(2t	−	t4	)	dt	9t2	dt	−	=	.	79	Copyright	©	2010	Pearson
Education,	Inc.	√	√	√	√	h)	Multiplying	top	and	bottom	by	(	x	+	4	+	x	+	1)(	x	+	3	+	x	+	1)	we	obtain	p	p	√	√	3	x+3+	x+1	3	1	+	3/x	+	1	+	1/x	3	√	√	p	=	p	→	2	x+4+	x+1	2	1	+	4/x	+	1	+	1/x	2	as	x	→	∞.	Let	x	∈	E	and	m,	k	≥	N	.	Hence	dist	(A,	B)	=	kx0	−	y0	k	>	0.	Let	G	=	(P,	Q,	0),	F	=	(p,	q,	r),	and	suppose	∇	×	G	=	F	.	On	the	other	hand,	given	²	>	0	and	n	∈
N,	choose	j	>	N	such	that	inf	k≥n	xk	+	²	>	xj	,	i.e.,	1/(inf	k≥n	xk	+	²)	<	1/xj	≤	supk≥n	(1/xk	).	If	|ak+1	|/|ak	|	≤	x	for	k	>	N	,	then	|aN	+1	|	≤	x|aN	|,	|aN	+2	|	≤	x2	|aN	|,	.	Since	r0	>	0,	there	is	a	point	xk	∈	E	∩	Br0	(a)	\	{a}.	Fix	x0	∈	V	and	set	E	=	Br	(x0	).	Then	f	(E)	=	[0,	1]	so	f	−1	(f	(E))	=	[−1,	1]	6=	[0,	1]	=	E.	If	x	belongs	to	the	intersection	of	these
balls,	then	ρ(a,	b)	≤	ρ(x,	a)	+	ρ(x,	b)	<	2r	=	ρ(a,	b),	a	contradiction.	Let	x	∈	E	∩	U	and	y	∈	E	∩	V	.	Since	f	is	continuous,	and	both	B	and	E	are	closed,	it	follows	that	a	∈	B	and	f	(a)	∈	E.	By	(2),	this	occurs	if	and	only	if	the	angle	between	them	is	π/2.	3π/2	π/2	−π	sin2	t	dt	=	√	.	Note:	dL/L	=	±0.05	does	not	work	because	then	dT	/T	=	(dL/L	−	dg/g)/2	might
equal	(0.05	+	0.01)/2	=	0.03,	outside	the	2%	error	allowed	for	T	.	8.4.5.	Suppose	x	∈	/	E	o	but	Br	(x)	⊂	E.	If	f	(q)	=	0	for	all	q	∈	Q	∩	[0,	1],	it	follows	that	f	(x0	)	=	0.	Since	E	is	a	nonempty	subset	of	[a,	b],	sup	E	is	a	finite	real	number	which	belongs	to	[a,	b].	c)	Since	f	has	a	local	maximum	at	x0	if	and	only	if	−f	has	a	local	minimum,	it	follows	from	b)	that
if	f	is	differentiable	at	x0	and	f	has	a	local	minimum	at	x0	then	f	0	(x0	)	=	0.	x∈[a,b]	Since	this	last	statement	is	equivalent	to	|fn	(x)	−	f	(x)|	<	ε	for	all	x	∈	[a,	b],	we	have	that	fn	→	f	in	C[a,	b]	if	and	only	if	fn	→	f	uniformly	on	[a,	b].	,	f	(xN	)}	for	all	x	∈	K.	3.2	One–Sided	Limits	and	Limits	at	Infinity.	And	0	=	f	(0)	=	f	(x	−	x)	=	f	(x)	+	f	(−x)	implies	f	(−x)	=
−f	(x).	Plugging	this	into	the	constraint,	we	obtain	z	3	/4	=	16,	i.e.,	z	=	4,	x	=	y	=	2.	2uy	2vx	∂(u,	v)	Thus	by	the	Implicit	Function	Theorem,	if	F	(x0	,	y0	,	u0	,	v0	)	=	(0,	0),	x20	6=	y02	,	and	u0	6=	0	6=	v0	,	then	such	solutions	u,	v	exist.	3.4.7.	Since	f	is	uniformly	continuous	on	[0,	1],	given	²	>	0	there	is	a	δ	>	0	such	that	x,	y	∈	[0,	1]	and	|x	−	y|	<	δ	imply
|f	(x)	−	f	(y)|	<	².	10.2	Limits	of	Functions.	Then	f	0	(x)	=	2	−	2	sin	x	cos	x	≥	0.	Since	log	increases	on	(0,	∞),	f	(1)	=	log(1)	=	0,	and	f	(3)	=	log(5),	it	follows	that	f	(E)	=	[0,	log(5)].	d)	By	hypothesis,	3	<	x1	<	5.	b)	If	{Vα	}	is	an	open	covering	of	f	(H),	then	{f	−1	(Vα	)}	is	a	relatively	open	covering	of	H.	b)	The	statements	are:	xα	≤	ex	for	x	large,	and	there
is	a	constant	Bα	such	that	xα	≤	Bα	ex	for	all	x	∈	(0,	∞),	Bα	→	1	as	α	→	0+,	and	Bα	→	0	as	α	→	∞.	b)	The	correct	statement	is:	If	x	is	a	lower	bound	of	E	and	x	∈	E	then	x	=	inf	E.	8.4.1.	a)	The	closure	is	E	∪	{0},	the	interior	is	∅,	the	boundary	is	E	∪	{0}.	Hence	the	intersection	is	a	subset	of	∂A	∩	∂B.	such	that	for	each	j	∈	N,	y	0.	f)	Since	sin2	x	=	1	−	cos2
x,	it	follows	from	factoring	that	√	1	−	cos	x	1	=√	sin	x	1	+	cos	x	√	√	so	the	limit	is	1/	2	≡	2/2.	b)	Since	f	0	is	continuous	and	nonzero	on	the	closed,	bounded	interval	I,	we	know	from	the	Extreme	Value	Theorem	that	there	is	a	c	∈	I	such	that	|f	0	(x)|	≥	|f	0	(c)|	>	0	for	all	x	∈	I.	It	follows	that	x	∈	E	\	E	o	⊆	∂E.	n→∞	n→∞	2.5.7.	It	suffices	to	prove	the	first
identity.	Thus	0	e−xy	dx	converges	uniformly	on	[1,	∞)	by	definition.	Since	it	also	contains	ψ(0)	=	(1,	0,	1,	0)	and	ψ(1)	=	(1,	1,	2,	1),	it	follows	that	a+b+c=0	a+c=1	a	+	b	+	2c	+	d	=	1.	Therefore,	E	has	no	cluster	points.	First	observe	by	a	one-	dimensional	result	that	wt	(x2	,	t2	)	=	0.	The	ψ	is	1–1	from	{1,	2,	.	π	2k	+	1	π	0	k=1	k=1	Since	by	a	sum	angle
formula	and	telescoping	we	have	2	sin	t	N	−1	X	cos(2k	+	1)t	=	N	−1	X	k=1	it	follows	that	(sin	2kt	−	sin(2k	−	2)t)	=	sin	2N	t,	k=1	4	(S2N	f	)(x)	=	π	Z	x	0	sin	2N	t	2	dt	=	2	sin	t	π	Z	x	0	sin	2N	t	dt.	x	=	∞.	Then	Z	δ	Z	∞	L{f	}(s)	≤	²(s	−	a)	e−(s−a)t	dt	+	(s	−	a)e−δ(s−a−1)	e−t	|φ(t)|	dt	=:	I1	+	I2	.	¯∞	R∞	5.4.4.	a)	0	sin	x	dx	=	−	cos	x	¯0	.	b)	The	set	A	in
Example	12.2	is	countable	but	not	a	Jordan	region.	2	2	b)	By	part	a)	(SN	f	)(0)	+	·	·	·	+	(S2N	f	)(0)	N	+1	(S0	f	)(0)	+	·	·	·	+	(S2N	f	)(0)	≤	≤	2(σ2N	f	)(0).	But	the	intersection	of	two	open	sets	is	an	open	set.	c)	Let	C1	represent	the	piece	in	y	=	c,	C2	represent	the	piece	in	x	=	b,	C3	represent	the	piece	in	y	=	d,	and	C4	represent	the	piece	in	x	=	a.	Let	²	>	0
and	choose	a	partition	P	=	{x0	,	x1	,	.	54	Copyright	©	2010	Pearson	Education,	Inc.	6.5.4.	Fix	n	≥	N	.	P	ak	cos(kx)	converges	for	each	x	∈	(0,	2π).	b)	By	Remark	8.10	and	the	Squeeze	Theorem,	kxk	×	yk	k	≤	kxk	k	kyk	k	≤	M	kxk	k	→	0	as	k	→	∞.	If	ak	=	1/k	2	,	then	k=1	ak	is	absolutely	convergent,	but	|ak	|1/k	→P1	as	k	→	∞.	Therefore,	Z	π/2	L(C)	=	4	0
¯π/2	3|	sin	t	cos	t|	dt	=	6	sin2	t	¯0	=	6.	Fix	x0	with	0	<	c	−	x0	<	δ.	Hence	by	hypothesis,	n	≥	N	implies	|xn	−	a|	≤	|C|bn	<	ε.	Thus	¯	¯	¯	¯	¯	f	(n)	¯	¯	(f	(n)	−	f	(n	−	1))	+	·	·	·	+	(f	(N0	+	1)	−	f	(N0	))	−	(n	−	N0	)L	N0	L	+	f	(N0	)	¯	¯	¯=¯	¯	−	L	+	¯	n	¯	¯	¯	n	n	µ	¶	n	−	N0	|N0	L	+	f	(N0	)|	≤	ε0	+	n	n	|N0	L	+	f	(N0	)|	≤	ε0	+	.	It	is	closed	because	its	complement	{(x,
y)	:	x2	+	4y	2	>	1}	is	open.	Thus	E1	∩	E2	is	a	Jordan	region	by	Theorem	12.4.	Since	E1	\	E2	=	E1	∩	E2c	and	∂(E2c	)	=	∂E2	imply	∂(E1	\	E2	)	=	∂(E1	∩	E2c	)	⊆	∂E1	∪	∂E2	,	the	set	E1	\	E2	is	also	a	Jordan	region.	b)	Clearly,	s2n+2	=	s2n	+	1/(2n	+	1)	−	1/(2n	+	2)	>	s2n	and	s2n+1	=	s2n−1	−	1/(2n)	+	1/(2n	+	1)	<	s2n−1	.	In	particular,	Z	lim	n→∞	a	b	Z	b	³
x	´n	−x	1+	e	dx	=	dx	=	b	−	a.	Since	L	is	1–1,	we	have	y	=	tq	,	i.e.,	E(xq)	=	(E(x))q	.	Hence	by	induction,	xn	is	decreasing	13	Copyright	©	2010	Pearson	Education,	Inc.	Since	Nφx	is	continuous,	it	follows	from	the	sign	preserving	property	that	there	is	an	r(x)	>	0	such	that	Nφx	is	nonzero	on	a	relative	closed	ball	Ex	:=	E	∩	Br(x)	(x).	Then	xk	yk	≥	(x	−
²)yk	for	each	k	≥	n,	i.e.,	supk≥n	(xk	yk	)	≥	(x	−	²)	supk≥n	yk	.	If	xk	∈	E	satisfies	xk	→	0	as	k	→	∞,	then	by	the	continuity	of	f	,	|f	(0)|	=	lim	|f	(xk	)|	≤	lim	kxk	kα	=	0.	By	hypothesis,	nan	=	so	an	=	n+1	n	1	−	=	,	n+2	n+1	(n	+	1)(n	+	2)	1	1	=	n(n	+	1)(n	+	2)	2	µ	1	1	−	n(n	+	1)	(n	+	1)(n	+	2)	¶	.	such	that	xkj	>	r	for	all	j	∈	N.	8.4	Interior,	Closure,	and
Boundary.	Finally,	if	p	<	1	then	Z	∞	dx	≥	1	+	xp	0	Z	∞	1	dx	1	≥	1	+	xp	2	Z	1	∞	dx	xp	since	2xp	≥	1	+	xp	for	x	≥	1.	0	b)	Let	E	be	the	cylinder	whose	boundary	is	S.	For	x	>	0	we	have	f	(x)	=	x3	,	so	f	(h)	−	f	(0)	0	f[0,∞)	(0)	=	lim	=	lim	h2	=	0.	0	0	x	−	x0	x	−	x0	Thus	the	function	xn	is	differentiable	at	x0	and	f	0	(x0	)	=	nxn−1	.	Now	∂S	has	two	pieces:	C1
given	by	φ(t)	=	(sin	t,	2,	cos	t),	t	∈	[0,	2π],	and	C2	given	by	ψ(t)	=	(2	cos	t,	4,	2	sin	t),	t	∈	[0,	2π].	Hence	by	Theorem	3.8	and	part	a),	f	+	(x)	→	L+	and	f	−	(x)	→	L−	as	x	→	x0	through	E.	2	ζ)	Since	f	0	(x)	=	(1	−	xp	)/(x2	+	1)2	is	never	zero	on	(−1,	1),	f	is	1–1	on	[−1,	1].	Since	E	is	bounded,	the	Bolzano–Weierstrass	Theorem	implies	that	some	subsequence
xkj	converges	to	a	point	a.	10.4.10.	Hence	it	follows	from	Gauss’	Theorem	that	ZZ	ZZZ	(f	F	)	·	n	dσ	=	F	·	F	dV.	Let	x	∈	∩α∈A	Eα	.	b),	c)	Repeat	the	proof	of	Exercise	9.4.7.	10.6.7.	a)	Repeat	the	proof	of	Exercise	3.4.5a,b.	By	induction,	Ã	n	!β	n	X	X	β	|ak	|	≤	|ak	|	k=1	k=1	for	n	∈	N.	Set	f	(x)	=	0	g(t)	dt.	Hence	the	original	series	is	conditionally	convergent.
The	ratio	is	less	than	or	equal	to	1/2	for	k	>	N	=	2.	Since	¯	2	¯	¯	2	¯	¯	xn	¯	¯	xn	−	2yn2	¯	¯	¯=¯	¯=	1	→0	−	2	¯	y2	¯	¯	¯	y2	2	yn	n	n	√	√	as	n	→	∞,	it	follows	that	xn	/yn	→	±	2	as	n	→	∞.	In	particular,	it	follows	from	Theorem	9.41	and	(*)	that	Z	Z	π	2	π	sin	u	2	π	sin	u	lim	(S2N	f	)(	)=	lim	du	=	du.	A	similar	argument	works	if	f	is	not	strictly	decreasing.	Similarly,
if	x	>	x0	,	choose	r	<	x0	<	x	<	q	such	that	q	−	r	<	1/N	.	4.2.2.	a)	By	the	Product	and	Chain	Rules,	g	0	(x)	=	2x2	f	0	(x2	)	+	f	(x2	),	so	g	0	(2)	=	8f	0	(4)	+	f	(4)	√	=	8e	+	3.	Notice	once	and	for	all	that	µ	¶	3(1	−	2t3	)	3(2t	−	t4	)	0	φ	(t)	=	,	.	Since	E	is	not	polygonally	connected,	there	exist	points	x0	6=	y0	in	E	such	that	Ux0	∩	Uy0	=	∅.	If	p	>	0,	then
log(log(log	k))	>	2/p	for	large	k	implies	that	p	log(log(log	k))	>	2	for	large	k.	Since	1	+	n	>	0	for	all	n	∈	N,	it	follows	that	n	+	1	>	100,	i.e.,	n	>	99.	Let	Bα	be	relatively	open	in	E,	i.e.,	Bα	=	E	∩	Vα	for	open	sets	Vα	in	Rn	.	0	2	x(ex	−	1)	dx	=	0	Z	x2	+z	2	Z	1	8	(x	+	y)	dy	dx	=	Z	e−2	.	4.1.7.	a)	Let	yn	→	x0	∈	(0,	∞).	0	0	b)	Since	f	is	bounded,R	|φ(t)|	≤	M	<	∞
for	all	t	∈	(0,	∞).	Since	√	√	0	φ	(t)	=	(−	z0	sin	t,	z0	cos	t,	0),	we	have	√	√	√	√	ω	=	dx	+	(x	+	y)	dy	+	(x2	+	xy	+	y	2	)	dz	=	(−	z0	sin	t	+	(	z0	cos	t	+	z0	sin	t)	z0	cos	t)	dt.	√	3.2.1.	a)	Let	L	=	−1	and	notice	that	x2	=	−x	when	x	<	0.	Since	f	(x)	∈	[a,	b]	for	all	x	∈	[a,	b],	it	is	clear	that	f	(a)	≥	a	and	f	(b)	≤	b.	Suppose	there	is	a	function	x	g	∈	C	n−1	such	that	g	(n)
exists	nowhere	on	R.	,	xk+1	are	distinct	points	in	E	∩	(a	−	r,	a	+	r).	By	b),	the	former	set	is	countable.	But	|	log	x|	≤	Cxα	,	so	log	k/k	p	≤	C/k	p−α	.	3.4.8.	a)	By	symmetry,	we	need	only	show	f	(b−)	exists.	,	tN	}	be	a	partition	of	I	which	satisfies	²	kP	k	<	min{δ,	}.	Hence	by	Exercise	7.1.5c,	fn	/gn	=	fn	·	(1/gn	)	→	f	·	(1/g)	=	f	/g	uniformly	on	[a,	b]	as	n	→	∞.
g	g	g2	4.2.6.	By	the	Product	Rule,	this	formula	holds	for	n	=	1.	By	iterating	Exercise	4.1.9,	we	see	that	all	derivatives	of	f	of	even	order	are	even	functions.	¯	¯	h	|h|	Since	α	>	1,	this	last	number	converges	to	zero	as	h	→	0	in	I.	Parameterize	C1	by	φ(t)	=	(	8	cos	t,	1,	8	sin	t),	t	∈	[0,	2π].	Thus	Z	Z	F	·	T	ds	=	∂S	2π	(3	sin	t	+	3	cos	t)(−3	sin	t)	dt	=	−9π.	Then
³	³	x	´n−1	x	´n	f	0	(x)	=	ex	−	1	+	≥	ex	−	1	+	>0	n	n	since	1	+	x/n	>	1.	Since	f	is	continuous	at	x,	choose	δ	>	0	such	that	|x−y|	<	δ	implies	|f	(x)	−	f	(y)|	<	².	Taking	the	limit	of	this	inequality	as	n	→	∞,	we	obtain	lim	inf	(xn	+	yn	)	≥	lim	xn	+	lim	inf	yn	.	P∞	d)	Suppose	k=0	ak	diverges.	(Multiply	top	and	bottom	by	1/	n.)	d)	Multiply	top	and	bottom	by	1/	n	to
obtain	p	p	√	4	+	1/n	−	1	−	1/n	4n	+	1	−	n	2−1	1	√	p	=p	→	=	.	Thus	E	:=	U	=	X	\	V	is	clopen	and	∅	⊂	E	⊂	X.	Conversely,	if	E	∩	(a	−	s,	a	+	s)	\	{a}	is	always	nonempty	for	all	s	>	0	and	r	>	0	is	given,	choose	x1	∈	E	∩	(a	−	r,	a	+	r).	Using	a	calculator,	we	see	that	x1	=	3.142546543,	x2	=	3.141592653,	x3	=	3.141592654,	and	x4	=	3.141592654.	11.4.3.	If	f
is	homogeneous	of	order	k,	then	f	(0)	=	f	(0	·	x)	=	0k	f	(x)	=	0.	e)	Suppose	α	>	0	and	x	<	y.	105	√	d)	E	=	{(x,	y,	z)	:	0	≤	y	≤	1,	y	≤	x	≤	1,	x3	≤	z	≤	1},	hence	by	Fubini’s	Theorem	and	the	substitution	3	u	=	x	+	1,	we	have	Z	1	Z	0	Z	1	√	1	p	2	3	x3	+	z	dz	dx	dy	=	x3	y	2	3	Z	Z	1	0	Z	x2	((x3	+	1)3/2	−	(2x3	)3/2	)	dy	dx	0	1	(x2	(x3	+	1)3/2	−	x2	(2x3	)3/2	)	dx	√	Z
2	2	3/2	27/2	4(2	2	−	1)	=	u	du	−	=	.	It	follows	that	0	<	2x2	+	x	−	3	=	(x	−	1)(2x	+	3)	<	7δ	≤	1/M	.	11.2.3.	By	definition,	f	(h,	0)	−	f	(0,	0)	fx	(0,	0)	=	lim	=	lim	h→0	h→0	h	p	|h	·	0|	=	0.	If	{Vα	}α∈A	is	an	open	covering	of	H	then	{H	∩	Vα	}α∈A	is	a	relatively	open	covering	of	H.	By	the	Inverse	Function	Theorem,	0	=	(f	−1	)0	(b)	=	1	f	0	(a)	implies	0	=	1,	a
contradiction.	6.1.7.	a)	Let	x,	y	∈	I.	Since	F	(0,	0,	0)	=	0	and	∂F	=	xy(2	cos	y	−	cos	z)	+	xyz	sin	z	+	cos	x	∂z	equals	1	6=	0	at	(0,	0,	0),	the	expression	has	a	differentiable	solution	near	(0,	0,	0)	by	the	Implicit	Function	Theorem.	Thus	f	is	not	differentiable	at	(0,	0).	Thus	Qx	=	−yz	+	fx	and	we	may	set	f	=	0,	i.e.,	Q	=	−xyz.	Hence	by	the	Bolzano–
Weierstrass	Theorem,	A	is	finite.	Similarly,	(arctan	x)0	=	1/	sec2	y	=	1/(1	+	x2	)	for	x	=	tan	y	∈	(−∞,	∞).	Let	²	>	0	and	set	δ	=	².	√	hypothesis	√	b)	Every	convergent	sequence	in	E	:=	(	2,	3)∩Q	must	have	a	limit	in	Q	and	cannot	converge	to	the	irrational	endpoints,	so	by	Theorem	10.16,	E	is	closed.	Then	Q(x)	:=	bn	xn	+	·	·	·	+	b1	x	+	b0	is	a	polynomial
with	rational	coefficients	which	satisfies	|P	(x)	−	Q(x)|	≤	|an	−	bn	||x|n	+	·	·	·	+	|a0	−	b0	|	<	ε	for	all	x	∈	[a,	b].	Since	{Ir	(x)}x∈E	covers	the	compact	set	E,	there	exist	finitely	many	xj	’s	in	E	such	that	N	[	E⊂	Irj	(xj	)	j=1	PN	SN	for	rj	=	r(xj	).	e)	By	the	Product	and	Reciprocal	Rules,	D(f	/g)(a)	=	D(f	·(1/g))(a)	=	(1/g(a))Df	(a)+f	(a)(−Dg(a)/g	2	(a)	=	(g(a)Df
(a)	−	f	(a)Dg(a))/g	2	(a).	9.1.4.	Let	ε	>	0	and	choose	N	so	that	k	≥	N	implies	kxk	−	ak	<	ε/2	and	kxk	−	yk	k	<	ε/2.	Hence	by	Jensen’s	inequality,	µZ	1	¶1/r	µZ	1	¶	Z	1	Z	1	r	r	r	|f	(x)|	dx	=φ	|f	(x)|	dx	≤	φ(|f	(x)|	)	dx	=	|f	(x)|	dx.	For	n	=	3,	this	is	about	54.74	degrees.	c)	If	xn	=	1	+	1/n,	then	xn	→	1	and	1/	log	xn	→	+∞	as	n	→	∞.	2.4.2.	If	xn	is	Cauchy,	then	there
is	an	N	∈	N	such	that	n	≥	N	implies	|xn	−	xN	|	<	1.	d)	Since	1	+	(−1)n	/n	=	1	−	1/n	when	n	is	odd	and	1	+	1/n	when	n	is	even,	inf	E	=	0	and	sup	E	=	3/2.	Indeed,	if	M	>	1,	then	set	r	=	min{kyj	−	yk	k	:	j,	k	∈	[1,	M	]}	and	notice	that	the	Br	(yj	)’s	are	open,	nonempty,	and	disjoint,	hence	separate	f	(K).	Hence	Z	Z	F	·	T	ds	=	C	3	(3t3	−	2t2	)	dt	=	1	128	.
Taking	the	limit	of	this	inequality	as	n	→	∞	and	as	²	→	0,	we	conclude	that	1/s	≤	lim	supn→∞	(1/xn	).	d)	Repeat	the	proof	of	Theorem	3.9,	replacing	the	absolute	value	by	the	norm	sign.	c)	dz	=	(1	−	x2	+	y	2	)y	(1	+	x2	−	y	2	)x	dx	+	dy.	Moreover,	by	the	Weierstrass	M–Test,	Bn	(x)	converges	uniformly	on	each	closed	bounded	interval	[a,	b].	,	1)	belongs	to
Rn	but	has	no	convergent	subsequence.	If	one	of	these	partial	derivatives	is	nonzero,	then	by	Lagrange’s	Theorem	there	is	a	scalar	λ	such	that	∇f	(a,	b,	c)	=	λ∇g(a,	b,	c).	Since	f	is	differentiable	at	a,	I3	/khk	→	0	as	h	→	0.	Similarly,	the	other	three	entries	also	coincide.	By	iterating	Exercise	4.1.9,	we	see	that	all	derivatives	of	f	of	odd	order	are	even
functions.	Thus	|f	(x)	−	L|	=	|x2	+	2x	−	8|	=	|x	+	4|	|x	−	2|	<	7δ	≤	ε	for	every	x	which	satisfies	0	<	|x	−	2|	<	δ.	11.6.5.	Let	F	(x,	y,	u,	v,	s,	t)	=	(u2	+	sx	+	ty,	v	2	+	tx	+	sy,	2s2	x	+	2t2	y	−	1,	s2	x	−	t2	y)	and	observe	that	æ	2u	0	∂(F1	,	F2	,	F3	,	F4	)	ç	0	2v	=	det	è	0	0	∂(u,	v,	s,	t)	0	0	ö	x	y	y	x		ø	=	−64uvsxty.	b)	Let	x	∈	U	.	Let	f	(x)	=	x3	+	x.	7.5.7.	a)	Since	f	(βn
)	−	f	(αn	)	=	f	(βn	)	−	f	(x)	+	f	(x)	−	f	(αn	),	and	1=	βn	−	x	x	−	αn	+	,	βn	−	αn	βn	−	αn	We	have	f	(βn	)	−	f	(αn	)	−γ	=	βn	−	αn	µ	¶µ	¶	f	(βn	)	−	f	(x)	βn	−	x	−γ	+	βn	−	x	βn	−	αn	µ	¶µ	¶	f	(x)	−	f	(αn	)	x	−	αn	+	−γ	.	f)	We	shall	use	the	Ratio	Test.	Therefore,	g(x)	→	0	as	x	→	0	for	all	k	≥	0.	∞	False.	2.2.3.	a)	Following	Example	2.13,	2	+	3n	−	4n2	(2/n2	)	+	(3/n)
−	4	−4	=	→	2	2	1	−	2n	+	3n	(1/n	)	−	(2/n)	+	3	3	as	n	→	∞.	Since	E	⊆	U	∪	V	we	may	suppose	x	∈	U	.	However,	the	series	converges	by	the	Logarithmic	Test	since	log((log	k)log	k	)/	log	k	=	log	log	k	→	∞	as	k	→	∞.	Thus	fn	is	uniformly	Cauchy.	Therefore,	√	x	=	2,	3.	Then	φ	=	ψ	◦	τ	,	hence	(ψ,	[0,	1])	and	(φ,	I)	are	orientation	equivalent.	b)	If	C(x,	y)	and	D(x,
y)	are	piecewise	smooth	curves	from	(x0	,	y0	)	to	(x,	y)	and	let	C	represent	the	curve	C(x,	y)	followed	by	−D(x,	y),	i.e.,	D(x,	y)	in	reverse	orientation.	By	definition,	x	∈	X	and	x∈	/	Eα	for	some	α	∈	A.	f	(x)	=	g(x)	=	x	are	increasing	on	[−1,	0]	but	f	(x)g(x)	=	x2	is	decreasing	on	[−1,	0].	10.2.1.	a)	Let	²	>	0	and	x	∈	R.	b)	Since	k	1/k	k	=	1/k	→	0	as	k	→	∞,	this
series	converges	by	the	Root	Test.	11.4.10.	Hence	by	the	Squeeze	Theorem,	xn	/yn	→	x/y	as	n	→	∞.	b)	By	part	a),	if	f	(x,	y,	z)	is	an	extremum	then	4y	2	x	−	2y	2	z	=	0	and	4x2	y	−	2x2	z	=	0,	i.e.,	y	2	(4x	−	2z)	=	0	=	x2	(4y	−	2z).	Then	x	≥	C	implies	logc	xq	1	≤	p	=	p−q	.	(Such	a	function	can	be	constructed	by	making	f	piecewise	linear	on	each	[k,	k	+	1],



its	graph	formingRa	triangle	whose	peak	occurs	at	the	midpoint	of	[k,	k	+	1]	with	height	P∞	∞	2/k.)	Then	k=1	f	(k)	=	1	converges	but	1	f	(x)	dx	=	∞.	Hence	by	the	Implicit	Function	Theorem	such	functions	u,	v,	s,	t	exist.	Finally,	if	θ	is	the	angle	between	φ(t1	)	−	φ(0)	and	φ(t2	)	−	φ(0),	then	by	(3)	in	8.1	we	have	t1	a	·	(t2	a)	t1	t2	cos	θ	=	=	=	±1.	But	by
Definition	2.14	(with	M	=	0),	xn	>	0	>	yn	for	n	sufficiently	large,	which	contradicts	the	hypothesis	xn	≤	yn	.	0	If	u	=	sec2	θ	then	du	=	2	sec	θ	·	sec	θ	tan	θ	dθ.	As	t	→	−1+,	x	→	−∞,	y	→	∞,	y/x	=	t	→	−1,	and	dy/dx	→	−1.	We	may	suppose	g(x)	>	0.	d)	By	b),	there	exist	x,	y	∈	R	such	that	xn	↓	x	and	yn	↑	y	as	n	→	∞.	Thus	by	part	a),	this	integral	converges	if
and	only	if	p	>	1.	Since	F	(0,	0,	0)	=	0	and	∂F	(0,	0,	0)	=	1	+	gz	(0,	0,	0)	>	1	∂z	is	nonzero,	the	expression	has	a	differentiable	solution	near	(0,	0,	0)	by	the	Implicit	Function	Theorem.	b)	By	Example	14.9,	this	is	the	Fourier	series	of	|x|.	Since	f	is	integrable,	there	is	a	partition	P	of	[a,	b]	such	that	kP	k	<	²/(8mC),	Z	b	Z	b	²	²	U	(f,	P	)	<	f	(x)	dx	+	and	L(f,	P
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Comparison	Theorem	and	Exercise	5.4.2a	the	integral	converges:	1	(1/x)	sin(1/x)	dx	≤	1	(1/x2	)	dx	<	∞.	1.5.7.	a)	implies	b).	It	follows	that	X	X	²	(Mj	−	mj	)|Rj	|	≤	2M	V	(∂E	∪	E0	)	+	|Rj	|	<	².	Notice	that	M	>	0.	But	U	is	open	in	X	by	Theorem	10.31.	Thus	B	is	orientation	compatible	with	A.	Thus	by	the	continuity	of	ax	,	Theorem	3.8,	and	the	fact	that	the
laws	of	exponents	hold	for	rational	powers,	we	conclude	that	ax+y	=	lim	atn	+qn	=	lim	atn	aqn	=	ax	ay	.	Let	²	>	0	and	choose	a	grid	G	such	that	Vol	(E1	∪	E2	)	+	²	>	V	(E1	∪	E2	;	G)	and	V	(E1	∩	E2	;	G)	<	².	9.4.8.	By	the	proof	of	Lemma	3.38,	if	f	is	uniformly	continuous,	then	f	takes	a	Cauchy	sequence	in	E	to	a	Cauchy	sequence	in	Rm	.	Since	x	∈	[1,	2],
we	have	|x	−	1|	=	x	−	1	≤	1	and	c	≥	1.	It	follows	that	1	1	1	1	=	p	log	k·log(log(log	k))	<	2	log	k	=	2	.	4.1.9.	a)	Suppose	that	f	is	odd	and	differentiable	on	I	and	x	∈	I.	By	the	Bolzano–Weierstrass	Theorem,	xn	has	a	convergent	subsequence,	i.e.,	there	is	an	x0	∈	R	and	integers	nk	such	that	xnk	→	x0	as	k	→	∞.	Then	τ	0	(u)	>	0	and	φ	◦	τ	(u)	=	φ(f	−1	(u))	=	(f
−1	(−u),	−u)	=	ψ(u).	Suppose	f	has	a	point	of	discontinuity	x0	∈	[0,	1].	Then	f	has	no	limit	as	x	→	0,	but	the	limit	of	g	is	1.	Since	x1	<	1,	the	limit	must	be	zero.	Since	−E	is	a	bounded,	nonempty	subset	of	Z,	it	has	a	supremum	by	the	Completeness	Axiom,	and	that	supremum	belongs	to	−E	by	Theorem	1.15.	Then	0	<	a	−	2	<	1	so	0	<	a	−	2	<	a	−	2	<	1	√
by	(6).	0	151	Copyright	©	2010	Pearson	Education,	Inc.	Since	tn	→	∞,	it	follows	from	the	Squeeze	Theorem	that	sn	→	∞	as	n	→	∞.	c)	Let	(a,	b,	c)	be	a	nonzero	vector	orthogonal	to	(3,	2,	−5),	i.e.,	0	=	(a,	b,	c)	·	(3,	2,	−5)	=	3a	+	2b	−	5c.	2.1.2.	a)	By	hypothesis,	given	ε	>	0	there	is	an	N	∈	N	such	that	n	≥	N	implies	|xn	−	1|	<	ε/2.	dxn	if	n	is	odd	0	if	n	is
even	we	have	by	Stokes’s	Theorem	that	Z	ω=	∂E	n	Z	X	j=1	(−1)j−1	dx1	.	b)	To	prove	the	Trichotomy	Property,	suppose	a,	b	∈	R.	In	particular,	f	(a)	∈	/	Bε0	(a),	a	contradiction.	Then	f	is	differentiable	on	(0,	1)	and	f	(0)	=	f	(1)	=	0,	but	f	is	not	even	continuous	on	[0,	1].	Given	ε	>	0,	choose	N	∈	N	so	that	N	≥	3	and	2/N	<	ε.	7.5.6.	Let	|f	00	(x)|	≤	M	and
choose	r0	<	²0	/M	.	Taking	the	infimum	of	this	inequality	over	all	x	∈	E,	we	conclude	that	inf	x∈E	ρ(x,	a)	≥	²	>	0.	π	−π	π	−π	14.2.3.	If	S	is	the	Fourier	series	of	a	continuous,	periodic	function	f	then	σN	=	σN	f	→	f	uniformly	on	R	by	Corollary	14.15.	d)	Integrating	by	parts	and	using	l’Hˆopital’s	Rule,	we	obtain	Z	0	1	¯1	log	x	dx	=	x	log	x	−	x	¯0	=	−1.	Thus
bx	is	decreasing	(not	increasing)	when	b	∈	(0,	1).	a)	Clearly,	sin	x	≥	2/2	for	x	∈	[π/4,	π/2].	Since	I	is	open,	there	is	an	²	>	0	such	that	(f	(x)−²,	f	(x)+²)	⊂	I.	Moreover,	by	Exercise	1.6.5b,	the	function	φ−1	is	1–1	from	{1,	2,	.	such	that	xkj	∈	B1/j	(a)	for	j	∈	N.	c)	Let	E	be	a	nonempty,	proper	subset	of	Rn	.	Then	1/xn	=	(−1)n	n	has	no	limit	as	n	→	∞.	Recall
that	1/2k	<	1/k	and	log(k	+	1)	−	log	k	=	log((k	+	1)/k)	→	0	as	k	→	∞,	so	choose	N2	so	that	log((k	+	1)/k	<	ε/2.	x−a	x−a	29	Copyright	©	2010	Pearson	Education,	Inc.	Hence	by	Exercise	1.6.5	and	construction,	φ	is	1–1	on	{1,	2,	.	If	f	(x)	=	1/x	for	x	∈	[−1,	0)	and	f	(x)	=	0	for	x	∈	[0,	1],	then	f	is	not	integrable	because	it’s	not	even	bounded	below,	so	the
lower	Riemann	sums	are	not	finite.	k	n	n+1	n+2	m−1	m	k=n	Each	term	in	parentheses	is	positive,	so	the	absolute	value	of	S	is	dominated	by	1/n.	Thus	f	0	(c)	=	1,	i.e.,	1	∈	f	0	(0,	2).	By	hypothesis,	(f	·	f	)(t)	=	r2	is	constant	on	I,	hence	by	the	Dot	Product	Rule,	0	=	(f	·	f	)0	(t)	=	f	(t)	·	f	(t)	+	f	(t)	·	f	0	(t)	=	2f	(t)	·	f	0	(t)	for	all	t	∈	I.	By	calculus,	p	this	function
increases	when	k	>	5/8.	,	b	−	a).	b)	By	definition	and	Theorem	9.8,	E	is	closed.	We	conclude	that	B	is	sequentially	compact.	Thus	Z	Z	F	·	T	ds	=	Z	F	·	T	ds	=	−	C2	1/2	F	·	T	ds	=	0	Z	Z	F1	(x,	0,	0)	dx	=	0,	C1	and	Z	1	C3	1	F	(x,	(1	−	x)/2,	0)	·	(1,	−1/2,	0)	dx	=	0	F2	(0,	y,	0)	dy	=	0,	0	1	2	Z	1	(x2	−	x)	dx	=	−1/12.	0	c)	Since	∂	x	∂	(e	sin	y)	−	(−ex	cos	y)	=	ex	cos
y	−	ex	cos	y	=	0,	∂x	∂y	R	it	follows	from	Green’s	Theorem	that	C	ω	=	0	for	all	such	curves	C.	√	Case	2.	Then	f	is	bounded,	but	the	graph	of	y	=	f	(x)	intersects	any	rectangle	R	in	the	unit	square	[0,	1]	×	[0,	1].	(n)	4.1.6.	For	x	<	0	we	have	f	(n)	(x)	=	0	for	all	n	∈	N.	g(0,	1)	=	(1,	∞)	is	connected	as	Theorem	10.62	says	it	should;	g[0,	1)	=	{0}	∪	(1,	∞)	is
neither	compact	nor	connected–note	that	Theorems	10.61	and	10.62	do	not	apply	since	g	is	not	continuous;	g[0,	1]	=	{0}	∪	[1,	∞)	is	neither	compact	nor	connected–note	that	Theorems	10.61	and	10.62	do	not	apply	since	g	is	not	continuous.	9.6.9.	a)	By	construction,	Ek	,	hence	E,	can	be	covered	by	a	finite	collection	of	intervals	of	total	length	2k	/3k	.
We	conclude	that	f	=	g	is	uniformly	continuous	on	the	subset	E.	Suppose	ii)	holds	and	let	C	be	any	piecewise	smooth	curve	of	the	type	described	in	condition	iii).	9	1	45	45	=	Z	1	Z	x2	12.3.3.	a)	0	0	Z	2	Z	1	dy	dx	=	1	+	x2	Z	0	0	1	x3	1	dx	=	1	+	x2	2	1−x/2	b)	0	0	Z	1	Z	c)	0	Z	1	Z	1−x2	Z	d)	x	Z	x2	exy	dx	dy	=	0	1	Z	1−x2	x	dy	dz	dx	=	0	0	0	1	0	2	2	(1	−	1	1	1
−	log	2	)	du	=	.	By	looking	at	the	graph,	we	see	that	f	(E)	=	R.	2	b)	We	first	prove	that	the	functions	g(x)	=	e−1/x	/xk	satisfy	g(x)	→	0	as	x	→	0	for	all	integers	k	≥	0.	¯∞	R∞	11.1.9.	a)	0	e−st	dt	=	−e−st	/s	¯0	=	1/s	for	s	>	0.	o	E	=	∅	and	∂E	=	E.	Moreover,	by	the	Chain	Rule	(see	Exercise	11.4.9),	∂gj	/∂xk	=	−Fxk	/Fxj	.	If	x,	a	∈	(0,	1)	and	|x	−	a|	<	δ,	then	|f
(x)	−	f	(a)|	=	|x	−	a|	|x2	+	xa	+	a2	−	1|	≤	4|x	−	a|	<	4	ε	=	ε.	Given	²	>	0	choose	N	so	large	that	|Fk,m	(x)|	<	²/(3M	)	for	x	∈	E	and	m,	k	≥	N	.	Hence	inf	(xk	+	yk	)	>	xjn	−	k≥n	1	+	inf	yk	n	k≥n	for	all	n	∈	N.	If	a	6=	0	6=	b,	then	we	may	suppose	|a|	<	|b|.	2	Copyright	©	2010	Pearson	Education,	Inc.	On	the	other	hand,	if	M	>	0,	then	choose	by	Archimedes
an	N	∈	N	such	that	N	>	M	.	Hence	if	f	is	integrable,	we	can	choose	P	so	that	V	(G(f	),	G)	≤	S(f	;	P)	−	s(f	;	P)	<	².	Applying	the	above	inequality	to	x	=	|a|/|b|	verifies	(*)	in	this	case	as	well.	Therefore,	applying	Stokes’s	Theorem,	we	obtain	Z	Z	ZZ	ZZ	P	dx	+	Q	dy	=	(P,	Q,	R)	·	T	ds	=	(∇	×	F	)	·	n	dσ	=	(Qx	−	Py	)	dA.	If	m	>	n	then	sm+1	−	sn	=	k=n	xk	.
Using	the	parameterizations	φ1	(t)	=	(2	sin	t,	2	cos	t,	4),	I1	=	[0,	2π],	and	φ2	(t)	=	(cos	t,	sin	t,	1),	I2	=	[0,	2π],	we	have	Z	Z	Z	F	·	T	ds	=	F	·	T	ds	+	F	·	T	ds	∂S	C1	Z	C2	2π	=	(10	cos	t	+	cos	4,	8	sin	t	−	sin	4,	6	cos	4	sin	t	+	8	sin	4	cos	t)	·	(2	cos	t,	−2	sin	t,	0)	dt	0	Z	+	2π	(5	sin	t	+	cos	1,	4	cos	t	−	sin	1,	3	cos	1	cos	t	+	2	sin	1	sin	t)	·	(−	sin	t,	cos	t,	0)	dt	0	Z
2π	=	(24	cos2	t	−	21	sin2	t	+	(2	cos	4	−	sin	1)	cos	t	+	(2	sin	4	−	cos	1)	sin	t)	dt	0	=	3π.	6.3.9.	By	hypothesis,	∞	X	k=1	Therefore,	∞	X	k=1	∞	1	1X	1	π2	=	=	.	Thus	by	the	Squeeze	Theorem	and	assumption	i),	sin	x	→	0	=	sin(0)	as	x	→	0.	2	Hence	ZZ	Z	π	Z	π	F	·	n	dσ	=	S	−π	(ab2	sin2	v	+	b3	sin2	v	cos	v)	dv	du	=	2π	2	ab2	.	Therefore,	g(a)	=	f	(a)	−	a	≥	0	and
g(b)	=	f	(b)	−	b	≤	0.	For	any	r0	>	r,	by	Remark	6.22i,	there	is	an	N	∈	N	such	that	k	≥	N	implies	ak+1	/ak	≤	r0	.	Since	θ	∈	[0,	π/2],	cos	θ	≥	0,	i.e.,	F	·	T	≥	0.	Since	a9	≈=	.0105	and	a10	≈	.0055,	n	=	10	terms	will	estimate	the	value	to	an	accuracy	of	10−2	.	Hence	by	part	a)	and	the	Squeeze	Theorem,	sin	x/x	→	1	as	x	→	0+.	In	particular,	the	explicit	curve
y	=	f	(x),	as	x	runs	from	a	to	b,	is	orientation	equivalent	to	the	explicit	curve	x	=	f	−1	(y),	as	y	runs	from	f	(a)	to	f	(b).	To	show	the	converse√is	not√true,	let	f	be	given	by	Example	11.11.	d)	Let	f	(x)	=	ex	−	1	+	sin	x.	c)	If	f	is	continuous	on	R	then	f	is	uniformly	continuous	on	[−π,	π].	Hence	by	assumptions	iii)	and	i),	cos	x	=	1	−	2	sin2	(x/2)	→	1	−	2	sin2
(0)	=	1	=	cos(0)	as	x	→	0.	√	√	c)	y	=	a2	−	x2	implies	x2	+	y	2	=	a2	.	10.4.5.	By	Exercise	10.3.10,	there	exist	²	:=	²x	>	0	such	that	V	=	∪x∈V	B²	(x).	Thus	the	set	used	to	define	M2	is	nonempty,	bounded	above	by	M1	and	bounded	below	by	0.	9.1.2.	a)	By	Theorem	9.2,	(1/k,	(2k	2	−	k	+	1)/(k	2	+	2k	−	1))	→	(0,	2)	as	k	→	∞.	Now	x1−p	has	a	finite	limit	as	x	→
0+	if	and	only	if	1	−	p	>	0,	¯1	i.e.,	p	<	1.	Since	E	is	increasing	and	xα	=	E(αL(x)),	it	follows	that	xα	<	y	α	.	Adding	a2	b2	+	c2	d2	to	both	sides,	we	conclude	that	(ab	+	cd)2	≤	(a2	+	c2	)(b2	+	d2	).	Thus	f	(x)	<	1	+	f	(x)	for	all	x	∈√(a,	b).	8.1.2.	a)	By	Cauchy-Schwarz,	k3vk	≤	|a	·	b|	kck	+	|a	·	c|	kbk	+	|c	·	b|	kak	≤	3kak	kbk	kck	≤	3,	so	kvk	≤	3/3	=	1.
Therefore,	y	<	w/10n+1	+	1/10n+1	.	Hence,	P	(x)/xm	→	0	as	x	→	±∞.	,	bm	).	Since	Pz	=	−y	implies	P	=	−yz	+	h(x,	y)	and	Py	=	−z	+	hy	,	we	may	set	Q	=	0	=	h,	i.e.,	P	=	−yz.	If	x	∈	/	(A	∩	∂B)	∪	(B	∩	∂A),	then	by	part	b),	x	∈	∂A	∩	∂B.	,	n	+	1}	→	{1,	2,	.	0	i.e.,	π	e−x	sin	x	dx	=	−e−π	/2.	81	Copyright	©	2010	Pearson	Education,	Inc.	Suppose	it	holds	for	`	−
1.	This	93	Copyright	©	2010	Pearson	Education,	Inc.	This	proof	doesn’t	change	if	x1	>	−2,	so	the	limit	is	again	x	=	2.	By	the	choice	of	δ0	,	we	have	F	(x0	)	<	F	(c).	Rb	c)	False.	Thus	by	Theorem	7.33	x	2	3x	=	∞	X	xk	logk−2	3	(k	−	2)!	k=2	for	x	∈	R.	a	39	Copyright	©	2010	Pearson	Education,	Inc.	22	Copyright	©	2010	Pearson	Education,	Inc.	Then	φk	is
zero	off	Ik	and	0	φk	(t)	dt	=	1.	9.2.8.	Suppose	that	a	<	b.	Therefore,	E	is	a	Jordan	region	if	and	only	if	E	and	E	0	are	Jordan	regions	by	Definition	12.5.	b)	By	Theorems	12.7	and	12.4,	Vol	(E)	=	Vol	(E	0	∪	∂E)	≤	Vol	(E	0	)	+	Vol	(∂E)	=	Vol	(E	0	).	To	prove	the	Transitive	Property,	suppose	a	<	b	and	b	<	c.	Let	φ(t)	=	(0,	0,	0)	+	t(1,	1,	0)	and	ψ(t)	=	(0,	0,	1)	+
t(3,	4,	0).	It	follows	that	there	is	an	interval	J	⊂	I	which	either	contains	a	or	has	a	as	an	endpoint	on	which	both	f	and	f	0	are	never	zero.	√	Case	3.√x0	≥	3.	3.1.5.	Let	f	(x)	→	L	and	g(x)	→	M	as	x	→	a,	and	xn	∈	I\{a}	converge	to	a.	Pn	¡	¢	Pn	¡	¢	Pn−1	d)	2n	=	(1	+	1)n	=	k=0	nk	so	k=1	nk	=	2n	−	1.	Since	every	singleton	is	closed	(see	Remark	8.22),	E	=
∪x∈E	{x}	is	a	decomposition	of	E	into	closed	sets.	2	2	Similarly,	f	(x)	>	f	(a)	−	ε	=	m	+	ε.	By	part	a),	Q	satisfies	the	Closure	Properties,	has	additive	inverses,	and	every	nonzero	q	∈	Q	has	a	multiplicative	inverse.	Then	sup	E	−	1/(n	+	1)	<	xn+1	<	sup	E	and	xn	<	xn+1	.	By	the	product	rule	for	partial	derivatives,	é	ù	i	j	k	∇	×	(f	F	)	=	det	ë	∂/∂x	∂/∂y	∂/∂z	û	f
F1	f	F2	f	F3	=	(fy	F3	+	f	(F3	)y	−	fz	F2	−	f	(F2	)z	,	fz	F1	+	f	(F1	)z	−	fx	F3	−	f	(F3	)x	,	fx	F2	+	f	(F2	)x	−	fy	F1	−	f	(F1	)y	)	=	(∇f	×	F	)	+	f	(∇	×	F	).	Let	A	=	{(x,	y)	:	y	=	x2	}	and	B	=	{(x,	y)	:	y	=	1}.	P∞	6.3.5.	Notice	that	all	(−1)k	ak	’s	are	nonnegative.	Note	that	in	either	case,	q	>	1.	Then	by	b)	and	c),	f	(x)	=	f	(	lim	qn	·	1)	=	lim	f	(qn	·	1)	=	lim	f	qn	(1)	=
lim	aqn	=	ax	.	3−1	2	9n	+	1	−	n	+	2	9	+	1/n	−	1	+	2/n	√	√	2.2.4.	a)	Clearly,	Thus	xn	x	xn	y	−	xyn	xn	y	−	xy	+	xy	−	xyn	−	=	=	.	If	M	is	any	upper	bound	of	E	then	M	≥	x.	(0,	π)∪(2π,	3π)∪.	Since	the	points	of	the	original	sequence	were	distinct,	it	follows	that	a	is	a	cluster	point	of	E.	By	∞	∞	the	Comparison	Theorem,	N	f	(x)	dx	≥	N	L/2	dx	=	∞,	a
contradiction.	By	a),	|(x	−	π)	+	sin	x|	=	|δ0	+	sin(δ0	+	π)|	≤	|x	−	π|3	/3!	=	δ03	/3!	<	δ	3	/3!.	Finally,	since	f	is	continuous	and	(by	the	definition	of	the	operator	norm)	kDg(a)(h)k	≤	kDg(a)k	khk,	kI2	k/khk	≤	kDg(a)k	kf	(a	+	h)	−	f	(a)k	→	0	as	h	→	0.	Since	E	is	closed,	we	have	by	Theorem	10.16	that	sup	E	=	limk→∞	xk	∈	E.	0	101	Copyright	©	2010	Pearson
Education,	Inc.	cos	θ	1	−	x2	0	If	u	=	cos	θ	then	du	=	−	sin	θ	dθ.	But	a	nonempty,	finite	set	is	nonempty	connected	if	and	only	if	it	is	a	single	point.	4.2.9.	a)	By	assumptions	ii)	and	vi),	0	≤	|	sin	x|	≤	|x|	for	x	∈	[−π/2,	π/2].	Since	K	is	compact	and	is	covered	by	{Bδx	(x)}x∈K	,	there	exist	x1	,	.	Hence	|f	0	(x)|	≤	3/(3	−	x)2	for	0	≤	x	<	3.	In	particular,	ex	−	1	+
sin	x	≥	f	(0)	=	0.	Suppose	div	F	=	0	everywhere	on	Ω.	2.3.9.	Since	x0	=	1	and	y0	=	0,	2	x2n+1	−	2yn+1	=	(xn	+	2yn	)2	−	2(xn	+	yn	)2	=	−x2n	+	2yn2	=	·	·	·	=	(−1)n	(x0	−	2y0	)	=	(−1)n	.	Hence,	N	=	1,	i.e.,	f	(x)	=	f	(x1	)	for	all	x	∈	X.	11.7.8.	a)	If	gx	(a,	b,	c)	=	gy	(a,	b,	c)	=	gz	(a,	b,	c)	=	0,	then	the	equations	obviously	hold.	k=1	Hence	by	Theorem	12.4,
E	is	a	Jordan	region	of	volume	zero.	Thus	L	is	strictly	increasing	on	(0,	∞).	But	f	has	range	(0,	∞)	so	f	(0)	=	1.	Therefore,	the	sequence	(log	k	+x)/(k	+x)	is	eventually	decreasing	for	each	x	∈	[0,	1].	Now	0	g(t)	dt	=	k=1	xk	/3k	=	x/(3	−	x)	by	Theorem	6.7,	so	g(x)	=	(x/(3	−	x))0	=	3/(3	−	x)2	.	c)	Let	(x,	y,	z)	=	φ(t).	b)	It	is	relatively	open	in	B1	(0,	0)	because
each	of	its	points	lies	in	a	relative	open	ball	which	stays	inside	the	set.	j=1	k=1	j=1	k=1	Given	a	compact	subset	H	of	V	,	choose	open	sets	W1	,	W2	containing	H	and	integers	N1	,	N2	,	such	that	φj	=	0	on	W1	for	j	≥	N1	and	ψk	=	0	on	W2	for	k	≥	N2	.	E	o	=	{(x,	y)	:	x2	+	4y	2	<	1}	and	∂E	=	{(x,	y)	:	x2	+	4y	2	=	1}.	...	By	symmetry,	it	suffices	to	prove
that	f	is	left	continuous	at	each	c	∈	(a,	b].	2.1.0.	a)	True.	Hence	A	=	kak	kbk	sin	θ	=	ka	×	bk	by	Remark	8.10.	For	any	x	∈	(a,	b),	by	the	Mean	Value	Theorem,	there	are	points	c,	d	between	a	and	x	such	that	|f	(x)	−	f	(a)|	=	(x	−	a)|f	0	(c)|	≤	(x	−	a)|g	0	(d)|	=	|g(x)	−	g(a)|.	b)	If	gk	→	g	monotonically	on	φ(I),	then	gk	(φ(t))kφ0	(t)k	→	g(φ(t))kφ0	(t)k
monotonically	on	I.	b)	Let	C	be	relatively	closed	in	E,	i.e.,	there	is	a	closed	set	B	such	that	C	=	E	∩	B.	Therefore,	xq	is	differentiable	at	a	and	the	value	of	its	derivative	there	is	nan−1	·	(maq(m−1)	)−1	=	qan−1−qm+q	=	qaq−1	.	Since	f	is	integrable	on	E	and	E1	is	a	Jordan	region,	we	can	choose	a	grid	G	=	{R1	,	.	7.5	Applications.	In	particular,	U	(f	1/m
,	P	)	−	L(f	1/m	,	P	)	<	²	by	the	choice	of	P	.	t	Hence	by	the	Chain	Rule,	Du	f	(a)	=	(f	◦	g)0	(0)	=	Df	(g(0))	·	g	0	(0)	=	∇f	(a)	·	u.	b)	The	graph	of	f	is	a	parabola	whose	absolute	minimum	is	1	at	x	=	0	and	whose	maximum	on	(−1,	2]	is	5	at	x	=	2.	10.3.2.	a)	This	is	the	set	of	points	on	or	inside	the	ellipse	x2	+	4y	2	=	1.	It	follows	that	w	≤	10n+1	y,	i.e.,	w/10n+1
≤	y.	Hence,	ZZ	Z	πZ	1	F	·	n	dσ	=	−	(u2	+	4	cos2	v,	4	sin	v	cos	v,	4	sin2	v)	·	(0,	−2	cos	v,	−2	sin	v)	du	dv	S	0	0	Z	π	=	8	sin	v	dv	=	16.	11.2.2.	Since	f	has	a	scalar	domain	and	is	differentiable	at	a,	we	have	0	=	lim	x→a	f	(x)	−	f	(a)	−	Df	(a)	·	(x	−	a)	f	(x)	−	f	(a)	(x	−	a)	=	lim	+	Df	(a).	c)	If	bk	=	(−1)k	then	Bn	=	−1/n	if	n	is	odd	and	0	if	n	is	even,	so	Bn	→	0	as	n
→	∞.	8.4.7.	Suppose	A	is	not	connected.	e)	By	Green’s	Theorem,	Z	ZZ	ZZ	(ux	dy	−	uy	dx)	=	(uxx	−	(−uyy	))	dA	=	∆u	dA.	k→∞	−1/k	p	:=	lim	Hence	the	series	converges	absolutely	by	the	Logarithmic	Test.	10.2.8.	a)	If	xn	∈	E,	then	xn	is	bounded.	Conversely,	if	φ	takes	{1,	2,	.	P∞	b)	By	Example	7.45,	3x	=	ex	log	3	=	k=0	xk	logk	3/k!	for	all	x	∈	R.	Let	U	be
relatively	open	in	E,	i.e.,	U	=	E	∩	V	for	some	open	V	in	Rn	.	k	k	k	k=1	k=1	d)	True.	5.3.5.	By	the	Fundamental	Theorem	of	Calculus	and	the	First	Mean	Value	Theorem	for	Integrals,	Z	f	(b)	−	f	(a)	=	b	Z	0	b	0	f	(t)	dt	=	f	(x0	)	a	dt	=	f	0	(x0	)(b	−	a)	a	for	some	x0	between	a	and	b.	γ)	Since	the	cases	n	odd	and	n	even	are	similar,	we	will	suppose	that	n	is
even.	We	obtain	x	=	2	+	x,	i.e.,	x2	−	x	−	2	=	0.	2.1.7.	a)	Let	a	be	the	common	limit	point.	10	Copyright	©	2010	Pearson	Education,	Inc.	By	Definition	2.7,	there	are	numbers	M	and	m	such	that	m	≤	xn	≤	M	for	all	n	∈	N.	Then	F	(x0	+	2h)	+	F	(x0	−	2h)	−	2F	(x0	)	0.	log	x	is	NOT	real-valued	for	x	<	0.	c)	By	part	b),	if	fk	converges	uniformly,	then	kfk	−fj	k
is	small	when	k	and	j	are	large.	Then	x	∈	Bxj	for	some	1	≤	j	≤	N	,	so	f	(x)	=	f	(xj	).	Hence	by	Theorem	14.29	and	Exercise	14.4.1,	this	series	must	converge	to	x	uniformly	on	[a,	b]	⊂	(−π,	π)	and	pointwise	on	(−π,	π).	d)	To	show	these	statements	may	not	hold	when	a	<	0,	let	a	=	−2,	b	=	−1,	c	=	2	and	d	=	5.	By	Remark	1.41,	the	unit	interval	(0,	1)	is
uncountable,	hence	{x}x∈(0,1)	is	an	uncountable	collection	of	pairwise	disjoint	nonempty	sets	which	covers	the	unit	interval	(0,	1).	Thus	the	series	converges	uniformly	on	any	closed	subinterval	of	(−3,	3).	If	y	∈	Br	(a)	then,	since	x	∈	Br	(a)	∩	Bs	(b),	we	have	ρ(x,	y)	≤	ρ(x,	a)	+	ρ(a,	y)	<	r	+	r	=	2r	<	d.	Therefore,	sup	f	(E)	≤	f	(sup	E).	x	1	√	√	√	b)	1/	2	≤	x
≤	1	implies	1/2	2	≤	x3	≤	1,	i.e.,	1	≤	1/x3	≤	2	2.	Then	supk≥N	(xk	yk	)	≥	xn	yn	≥	(2M/C)yn	for	any	n	≥	N	and	supk≥N	(xk	yk	)	≥	(2M/C)	supn≥N	yn	>	M	.	We	shall	obtain	a	contradiction	by	showing	that	wxx	(x2	,	t2	)	−	wt	(x2	,	t2	)	≥	0.	Thus	by	Theorem	11.58,	(a,	b)	is	a	saddle	point.	Suppose	without	loss	of	generality	that	an	>	0.	Hence	by	the
Intermediate	Value	Theorem,	there	is	an	x	(between	0	and	1)	such	that	f	(x)	=	0.	We	conclude	that	ZZ	ZZ	lim	ey/k	cos(x/k)	dA	=	1	dA	=	Area	(E).	Thus	the	minimum	of	w	on	H	must	be	less	than	or	equal	to	−`	and	must	occur	on	the	compact	set	K.	i=1	j=1	Therefore,	|f	(x)	−	f	(a)|	=	|D	(2)	f	(c;	x	−	a)|/2!	≤	M	kx	−	ak2	for	M	=	n2	C/2.	Let	Ej	be	ordered
from	largest	radius	to	the	smallest.	Hence	by	Theorem	6.40,	|sn	−	s|	is	dominated	by	(1/2)n+1	/(1/2)	=	(1/2)n	.	Then	Y	\C	is	open	in	Y	,	so	by	Theorems	10.58	and	1.37,	f	−1	(Y	\C)	=	X	\f	−1	(C)	is	open	in	X,	i.e.,	f	−1	(C)	is	closed	in	X.	If	2	y	6=	0	then	λ	=	1	so	x	=	1/2.	7.4.6.	Using	the	substitution	u	=	a	−	x,	du	=	−dx,	we	have	Z	a	Z	0	xn	f	(n+1)	(a	−	x)	dx
=	0	(a	−	u)n	f	(n+1)	(u)	du.	J	I	13.1.9.	It	is	clear	that	(x,	y)	=	φ(t)	implies	x3	+	y	3	=	3xy.	For	x	>	0	we	have	f	0	(x)	=	3x2	,	so	00	f[0,∞)	(0)	=	lim	h→0	f	(h)	−	f	(0)	=	lim	3h	=	0.	By	part	a),	there	exist	α1	,	.	|f	(x,	y)|	<	=	|x	−	1|	¯¯	|x	−	1|	|y|	y	¯	85	Copyright	©	2010	Pearson	Education,	Inc.	b)	Since	|x	cos((x2	+	1)/x3	)|	≤	|x|	for	all	x	6=	0,	it	follows	from	the
Squeeze	Theorem	that	limx→0	x	cos((x2	+	1)/x3	)	=	0.	c)	If	E	is	the	set	of	points	xn	such	that	xn	=	1	−	1/n	for	odd	n	and	xn	=	1/n	for	even	n,	then	sup	E	=	1,	inf	E	=	0,	but	neither	0	nor	1	belong	to	E.	We	√	Hence	by	hypothesis,	√	0	conclude	that	f	(x)	=	±	α,	i.e.,	f	(x)	=	±	α	x	+	c	for	some	c	∈	R.	Since	ε	>	0,	we	have	εx	≤	ε	sup	A,	so	the	latter	is	an	upper
bound	of	B.	b)	The	line	is	parallel	to	a,	so	a	“lies	in	the	plane.”	Since	b	−	c	is	another	vector	that	lies	in	the	plane,	it	follows	from	part	a)	that	an	equation	of	the	plane	is	given	by	d	·	x	=	b	·	d,	where	d	=	a	×	(b	−	c).	g	0	(g	−1	(g(b)))	·	f	0	(f	−1	(g(g	−1	(b))))	g	(b)	·	f	0	(a)	34	Copyright	©	2010	Pearson	Education,	Inc.	First,	since	g	is	continuous	and
nonzero	on	[a,	b],	1/g	is	continuous,	hence	integrable	on	[a,	b].	If	it	holds	for	n	then	n+1	X	k=1	k2	=	n(n	+	1)(2n	+	1)	n+1	(n	+	1)(n	+	2)(2n	+	3)	+	(n	+	1)2	=	(n(2n	+	1)	+	6(n	+	1))	=	.	Since	div	F	=	x	+	y,	it	follows	from	Gauss’	Theorem	that	ZZ	ZZZ	Z	2π	Z	3	Z	2	Z	3Z	2	ω=	(x	+	y)	dV	=	(x	+	r	cos	θ)r	dx	dr	dθ	=	2π	xr	dx	dr	=	18π.	1.4.3.	a)	This
inequality	holds	for	n	=	3.	¶	.	By	definition,	A	⊆	f	−1	(f	(A))	holds	whether	f	is	1–1	or	not.	Since	u	is	continuous	on	E,	it	follows	that	u	is	constant	on	E.	Thus	f	0	exists	and	is	continuous	on	R.	,	0)	−	f	(0)	¯	≤	lim	|h|α−1	=	0	(0)	¯	∂xj	¯	h→0	¯	¯	h→0	h	as	h	→	0	since	α	>	1.	b)	If	ψ(t)	=	(a	+	r	cos	t,	b	+	r	sin	t),	then	ψ	0	(t)	=	(−r	sin	t,	r	cos	t).	Since	a	<	b,	I	is
not	zero.	2.4.1.	Since	(2n2	+	3)/(n3	+	5n2	+	3n	+	1)	→	0	as	n	→	∞,	it	follows	from	the	Squeeze	Theorem	that	xn	→	0	as	n	→	∞.	Since	(n	−	N	)/n	→	1	as	n	→	∞,	it	follows	that	σn	>	M/2	for	n	large,	i.e.,	σn	→	∞	as	n	→	∞.	Hence	all	the	hypotheses	of	L’Hˆopital’s	Rule	are	satisfied	by	g/f	for	the	case	when	B	=	0.	c)	L(f,	P	)	=	0.5f	(0)	+	0.5f	(0.5)	+	f	(1)	≈
0.2485860.	k=n+2	(n)	Hence	by	induction,	given	n	∈	N,	there	are	integers	N	=	N	(n)	∈	N,	and	ak	=	ak	∈	Z	such	that	(*)	holds.	b)	By	the	Comparison	Theorem,	Z	n	1+	1	n−1	Z	k+1	X	1	dx	=	1	+	2	x	k=1	k	n−1	n	k=1	k=1	X	X	1	1	1	dx	≥	1	+	=	2	2	x	(k	+	1)	k2	for	all	n	∈	N.	If	f	is	even	and	differentiable,	then	f	0	(0)	=	0.	−π	d)	Use	the	trivial
parameterization	φ(u,	v)	=	(u,	v,	u2	),	E	=	B1	(0,	0).	Thus	the	trace	of	φ(t)	approaches	(0,	0)	and	is	asymptotic	to	the	negative	y	axis	as	t	→	−∞.	S	E	R	Thus	S	dσ	=	Area	(S)	by	Theorem	12.22.	2	2	a	a	Let	P0	=	P	∪	E	:=	{x0	,	.	¯	¯n	¯	n	2	n	2	2	k=1	k=1	7.1.11.	11.2	The	Definition	of	Differentiability.	We	conclude	that	sup(A	+	B)	<	a0	+	b0	,	a	contradiction.
Hence	by	Corollary	11.34,	there	is	a	constant	M	>	0	such	that	|f	(x)|	=	|f	(x)	−	f	(0)|	≤	M	kx	−	0k	=	M	kxk	for	all	x	∈	E.	Since	f	(c)	is	the	product	of	these	factors	and	f	(n)	(xj	),	it	follows	that	the	f	(n)	(xj	)’s	must	have	different	signs.	Indeed,	using	the	substitution	y	=	π/2	−	x,	dy	=	−dx,	we	have	Z	π/2	Z	π/2	e−a	cos	x	dx	=	0	e−a	sin	y	dy.	Thus	Vol	(E)	=	inf
G	V	(E;	G)	≥	|R|	>	0.	(1	−	2k)/(1	·	4	.	√	Thus	θ	=	arccos(1/	n).	a)	Since	f	(x)	=	ex	implies	f	(k)	(x)	=	ex	for	all	k	≥	1,	the	Taylor	expansion	of	ex	at	x	=	1	is	ex	=	P7.4.3.	∞	k	k=0	e(x	−	1)	/k!	valid	on	R	by	Theorem	7.43.	dxn	=	j=1	dx1	.	,	xn−1	have	been	chosen	in	Br	(a)	∩	E.	Here	is	a	different	argument	which	does	not	use	Bernoulli’s	Inequality.	Let	f	(x)	=	1
for	x	∈	Q	and	f	(x)	=	−1	for	x	∈	/	Q.	b)	As	in	part	a),	we	may	suppose	that	ax	+	by	+	cz	+	dw	=	1.	It	follows	that	Vol	(E1	∪	E2	)	≥	Vol	(E1	)	+	Vol	(E2	)	−	2².	Hence	the	series	converges	by	the	Dirichlet	Test.	Then	Nφ	=	(−2u,	0,	1)	points	upward	and	ZZ	Z	F	·	n	dσ	=	(u4	−	2u3	v	2	)d(u,	v)	S	Z	B1	(0,0)	2π	Z	1	=	0	1	=	6	0	2π	Z	0	(r4	cos4	θ	−	2r5	cos3	θ	sin2
θ)r	dr	dθ	2	cos	θ	dθ	−	7	Z	2π	4	cos3	θ	sin2	θ	dθ	=	0	π	.	For	each	x	∈	R,	f	(2x)	=	f	(x	+	x)	=	f	(x)	+	f	(x)	=	2f	(x).	Integrating	by	parts	twice,	we	obtain	Z	∞	π	R∞	Z	e−x	sin	x	dx	=	∞	Z	e−x	cos	x	dx	=	e−π	−	π	e−x	sin	x	dx,	π	R∞	(e−xy	sin	x/x)	dx)	=	e−π	/2	when	y	=	1.	fnjn	(a)	=	aj11	.	as	h	→	0,	we	conclude	that	f	is	differentiable	at	0.	Since	kNφ	k	=	k(−2u,
2v,	1)k	=	we	have	ZZ	Z	1	Z	g	dσ	=	4	S	0	u	p	1	+	4u2	+	4v	2	,	(1	+	4u2	+	4v	2	)	dv	du	=	0	22	.	d)	By	definition,	φ0	(t)	=	(−3	cos2	t	sin	t,	3	sin2	t	cos	t),	hence	kφ0	(t)k	=	3	p	cos4	t	sin2	t	+	sin4	t	cos2	t	=	3|	sin	t	cos	t|.	Suppose	n	>	1	and	x	6=	x0	.	By	the	Extreme	Value	Theorem,	there	is	an	ε	>	0	such	that	|g(x)|	≥	ε	for	all	x	∈	[a,	b].	By	definition,	given	M
∈	R,	there	is	an	N	∈	N	such	that	n	≥	N	implies	xn	>	M	.	10.1.12.	b)	f	−1	(0,	π)	=	.	But	kxkj	k	→	∞	so	it	cannot	be	bounded.	g	−1	(−1,	1)	=	(−∞,	−1)	∪	(1,	∞)	∪	{0}	is	not	open	and	g	is	not	continuous;	g	−1	[−1,	1]	=	(−∞,	−1]	∪	[1,	∞)	∪	{0}	is	closed,	no	big	deal–note	that	Exercise	9.4.4	does	not	apply	since	g	is	not	continuous.	dxn	=	Q	n	X	(−1)j−1	a1	.	S
0	d)	Since	div	F	=	2y	+	2,	we	have	by	Gauss’	Theorem	that	ZZ	Z	2π	Z	2	Z	4−r	2	F	·	n	dσ	=	S	(2r	sin	θ	+	2)r	dz	dr	dθ	Z	0	r	2	−4	0	2π	Z	2	=	0	(8	−	2r2	)(2r	sin	θ	+	2)r	dz	dr	dθ	0	Z	2	=	0	+	4π	(8r	−	2r3	)	dr	=	32π.	Part	a)	follows	directly	from	Remark	8.27ii.	R∞	R1	R∞	d)	0	≤	0	dx/(1	+	xp	)	≤	0	dx/(1	+	xp	)	+	1	dx/xp	.	3	∂E	d)	If	x	=	(a	+	b	cos	v)	cos	u,	y	=
(a	+	b	cos	v)	sin	u,	and	z	=	b	sin	v,	then	x	dy	dz	+	y	dz	dx	+	z	dx	dy	¡	¢	=	b(a	+	b	cos	v)2	cos2	u	cos	v	+	b(a	+	b	cos	v)2	sin2	u	cos	v	+	b2	(a	+	b	cos	v)	sin2	v	du	dv	¡	¢	=	b(a	+	b	cos	v)2	cos	v	+	b2	(a	+	b	cos	v)	sin2	v	du	dv.	9..4.9.	Suppose	without	loss	of	generality	that	f	(a)	<	f	(b).	47	Copyright	©	2010	Pearson	Education,	Inc.	We	obtain	−ε	<	1/xn	,
i.e.,	|1/xn	|	=	−1/xn	<	ε.	If	n	is	even,	then	n	−	k	and	k	are	either	both	odd	or	both	even.	If	this	inequality	is	strict,	then	sup(A	+	B)	−	sup	B	<	sup	A,	and	it	follows	from	the	Approximation	Property	that	there	is	an	a0	∈	A	such	that	sup(A	+	B)	−	sup	B	<	a0	.	77	Copyright	©	2010	Pearson	Education,	Inc.	We	obtain	x	=	2	+	√x	−	2,	i.e.,	x2	−	5x	+	6	=	0.
Since	2x	−	x2	=	−2	implies	x	=	1	±	3,	we	also	have	f	−1	(E)	=	[1	−	3,	1	+	3].	8.4.9.	a)	If	A	=	(0,	1)	and	B	=	[1,	2]	then	(A	∪	B)o	=	(0,	2)	but	Ao	∪	B	o	=	(0,	1)	∪	(1,	2)	6=	(0,	2).	Thus	the	trace	of	φ(t)	approaches	(0,	0)	and	is	asymptotic	to	the	positive	y	axis	as	t	→	∞.	Since	H1	is	compact,	choose	N	so	large	that	H1c	,	.	Thus	f	−1	is	1–1	on	B0	.	12.5.5.
Clearly,	φj	ψk	belongs	to	Ccp	(Rn	),	φj	ψk	≥	0,	and	spt	(φj	ψk	)	⊂	Vj	∩	Wk	.	Hence	by	Remark	6.40,	|sn	−	s|	is	dominated	by	(22	/2!)(1/2)n−1	/(1/2)	=	(1/2)n−3	.	Hence	there	is	an	N	so	large	that	k	≥	N	and	x	∈	[−M,	M	]	imply	|fk	(x)	−	f	(x)|	<	².	b)	|2	−	x|	<	2	if	and	only	if	−2	<	2	−	x	<	2	if	and	only	if	−4	<	−x	<	0	if	and	only	if	0	<	x	<	4.	c)	This	is	the	set
of	points	on	or	above	the	parabola	which	lie	below	the	line	y	=	1.	Since	z(x)	contains	m	terms,	it	is	easy	to	see	that	z(x)	→	maq(m−1)	as	x	→	a.	Suppose	E	is	infinite.	N	+1	2	N	+1	2	2	|σN	(x)	−	f	(x)|	=	k=0	14.2.2.	Since	any	Riemann	integrable	function	is	bounded,	it	follows	from	(8)	and	(9)	that	Z	Z	1	π	M	π	|(σN	f	)(x)|	≤	|f	(x)|	|KN	(x	−	t)|	dt	≤	KN	(x	−	t)
dt	=	M.	d)	If	f	(x)	=	x3	then	f	0	(x)	=	3x2	is	zero	at	x	=	0	but	f	(0)	is	neither	a	local	maximum	nor	a	local	minimum.	Z	Z	F	·	T	ds	=	∂E	2π	dt	=	2π.	a)	Let	x	∈	∂(A	∩	B)	∩	(Ac	∪	(∂B)c	).	10.4.9.	Since	supx∈[0,1]	|xn	|	=	1,	kfn	k∞	=	1	for	all	n	∈	N.	Let	φ(t)	=	(r	cos	t,	r	sin	t).	Since	this	last	series	converges	(it’s	Geometric	with	r	=	e−a	<	1),	the	original	series
converges	uniformly	on	[a,	b]	by	the	Weierstrass	M–Test.	e)	If	f	is	periodic	and	continuously	differentiable,	then	|f	0	(c)|	≤	M	<	∞	for	all	c	∈	R.	Since	tan(u/x)	≥	u/x	for	x	>	2u/π	(see	(1)	in	Appendix	B),	and	f	0	(x)	=	sin(u/x)	−	(u/x)	cos(u/x),	we	see	that	f	(x)	is	increasing	for	x	>	2u/π.	e)	Notice	0	<	b	<	1	implies	1/b	>	1.	In	particular,	2x	−	sin2	x	≥	f	(0)	=
0,	i.e.,	sin2	x	≤	2|x|	when	x	≥	0.	Thus	by	induction,	the	formula	holds	for	all	`	∈	N.	It	won’t	work	for	n	≥	4	either	because	f	000	is	not	defined	at	x	=	0	so	no	higher	derivative	exists	by	definition.	c)	Clearly,	fx	=	yexy	,	fy	=	xexy	,	fxx	=	y	2	exy	,	fxy	=	(xy	+	1)exy	,	fyy	=	x2	exy	,	.	Since	the	only	rectangles	which	intersect	E	lie	on	the	x-axis,	there	are	only
2m	of	these.	2	2−a−b	2	¶	|R|.	Since	f	(x)	→	3	as	x	→	1	and	f	(1)	:=	3,	it	follows	from	Remark	3.20	that	f	(x)	is	continuous	on	[0,	1].	We	may	suppose	that	Vol	(E)	6=	0.	1.4.10.	If	r	<	1,	then	in	the	discrete	space,	Br	(a)	=	{a}.	Since	v	is	parallel	to	b	−	a,	L	is	parallel	to	C.	But	by	Theorem	1.37,	f	−1	(V	)	∩	E	=	f	−1	(V	∩	f	(E))	=	f	−1	(U	∩	f	(E))	=	f	−1	(U	)	∩
E.	+	3.1.8.	a)	By	symmetry,	it	suffices	to	show	the	first	identity.	4.2.5.	a)	If	f	(a)	6=	0,	|f	(a	+	h)|	>	|f	(a)|/2	>	0	for	h	small	(like	the	proof	of	Lemma	3.28).	1.3.0.	a)	True.	P∞	6.4.4.	If	bk	↓	b,	then	bk	−	b	↓	0P	as	k	→	∞.	4.3.2.	By	the	Mean	Value	Theorem,	2	=	f	(2)	−	f	(0)	=	2f	0	(c)	for	some	c	∈	(0,	2).	2.3.7.	Choose	by	the	Approximation	Property	an	x1	∈	E
such	that	sup	E	−	1	<	x1	≤	sup	E.	−x	√	x	≤	2,	i.e.,	1	≤	2/	x.	Use	Density	of	Rationals	to	choose	tn	and	qn	∈	Q	such	that	tn	→	x	and	qn	→	y.	and	by	the	Squeeze	Theorem,	xn	→	sup	E	as	n	→	∞.	Otherwise,	Du	f	(a)	=	k∇f	(a)k	cos	θ	ranges	from	−k∇f	(a)k	(when	θ	=	π)	to	k∇f	(a)k	(when	θ	=	0),	with	maximum	value	of	k∇f	(a)k	when	θ	=	0,	i.e.,	when	u	is
parallel	to	∇f	(a).	b)	If	n	converges	to	some	a,	then	given	ε	=	1/2,	1	=	|(n	+	1)	−	n|	<	|(n	+	1)	−	a|	+	|n	−	a|	<	1	for	n	sufficiently	large,	a	contradiction.	9.5.7.	a)	Suppose	H	is	compact.	a)	By	Exercises	11.1.8	and	11.1.9,	L{tet	}	=	−L{et	}0	(s)	=	−(1/(s	−	1))0	=	1/(s	−	1)2	.	Hence	by	Theorem	4.17i,	f	increases	on	[0,	∞).	By	Remark	5.8,	if	P	is	finer	than
P²	then	U	(f,	P	)	−	L(f,	P	)	≤	U	(f,	P²	)	−	L(f,	P²	)	<	².	9	π	y	cos(xy)	dy	dx	=	0	p	3	y	cos(xy)	dx	dy	0	Z	0	0	π	=	sin(πy)	dy	=	0	1	(1	−	cos(π	2	)).	kwk	k(a,	b,	c)k	kwk	√	Since	w	·	(a,	b,	c)	=	ax0	+	by0	+	cz0	−	d,	it	follows	that	h	=	|ax0	+	by0	+	cz0	−	d|/	a2	+	b2	+	c2	.	10.5	Connected	Sets.	b)	If	c	=	0	then	ac	=	0	=	bc	so	we	may	suppose	c	>	0.	a)	Let	²	>	0.	But	E
is	closed,	so	by	Theorem	10.16,	a	∈	E.	Thus,	by	the	Fundamental	Theorem	of	Calculus	and	the	Chain	Rule,	F	0	(x)	=	f	(g(x))	·	g	0	(x)	≥	0	·	0	=	0.	¸	·	and	0	Dg(x,	y)	=	1	−y	sin(xy)	1	−	x	sin(xy)	1	+	log	y	x/y	¸	1	,	0	¸	and	D(f	·	g)(x,	y)	=	[	2x	log	y	−	y	2	sin(xy)	cos(xy)	−	xy	sin(xy)	+	x2	/y	]	.	By	the	Fundamental	Theorem	of	Calculus	we	obtain	0	=	αf	(c)	−	βf
(c)	=	(α	−	β)f	(c)	for	all	c	∈	[a,	b].	Thus	g	is	well	defined	on	all	of	E.	By	the	choice	of	δ,	the	definition	of	ε,	and	a	little	algebra	that	f	(x)	<	f	(a)	+	M	−	f	(a)	M	+	f	(a)	=	=	M	−	ε.	Thus	P	satisfies	i).	Since	u	is	harmonic,	we	have	ZZZ	k∇uk2	dV	=	0.	Then	(f	−1	)0	(u)	=	1/f	0	(t)	>	0	for	t	=	f	−1	(u),	i.e.,	τ	(u)	:=	f	−1	(u)	is	an	orientation	equivalent	change	of
variables.	c)	Let	x	∈	(0,	π/2].	3.3.2.	a)	Consider	f	(x)	=	ex	−	x3	.	Thus	the	claim	holds	for	all	n	≥	3.	2	3	k	k	2	0	0	k=1	k=1	Since	sin(kπ/2)	=	−1	when	k	=	3,	7,	.	Hence	by	induction,	this	result	holds	for	all	n	∈	N.	4.3.9.	Let	A	represent	the	limit	of	{f	(n)}.	A	portion	of	the	plane	x	+	y	+	z	=	1	lies	above	the	first	quadrant	of	the	xy	plane	and	slants	back
toward	the	z	axis,	so	the	point	(x0	,	y0	,	z0	)	where	the	tangent	plane	is	parallel	should	be	on	the	“back”	side	of	the	paraboloid,	i.e.,	(x0	,	y0	)	should	lie	in	the	fourth	quadrant.	By	hypothesis,	|Bn,m	|	≤	2M	.	Hence	ak	rk	is	eventually	k	decreasing,	in	particular,	bounded	above,	/r)k	for	P∞	say	byk	M	.	By	the	Triangle	Inequality,	kf	(a	+	h)	+	g(a	+	h)	−	f
(a)	−	g(a)	−	T	(h)	−	S(h)k	kf	(a	+	h)	−	f	(a)	−	T	(h)k	kg(a	+	h)	−	g(a)	−	S(h)k	≤	+	.	Thus	f	(x)	=	0	for	all	x	∈	[a,	b].	Therefore,	X	X	U	(g,	P0	)	=	Mj	(g)∆xj	+	Mj	(g)∆xj	j∈A	=	X	j∈B	(Mj	(g)	−	Mj	(f	))∆xj	+	U	(f,	P0	)	j∈A	≤	X	2C∆xj	+	U	(f,	P	)	j∈A	<	4mC	Z	=	²	+	8mC	Z	b	f	(x)	dx	+	a	²	2	b	f	(x)	dx	+	².	d)	By	part	c),	F	=	(fx	,	fy	)	for	some	f	defined	on	V	.	0	1	c)
Since	f	(u,	v)	=	(2,	5)	implies	u	=	±2,	v	=	±1	or	u	=	±1,	v	=	±2	and	·	Df	(u,	v)	=	we	have	·	D	−1	±1	f	(2,	5)	=	±4	or	·	D−1	f	(2,	5)	=	±2	±2	±2	±2	±1	±4	¸	v	u	,	2u	2v	¸−1	·	∓1/3	=	±2/3	¸−1	·	=	±2/3	∓1/3	¸	±1/3	,	∓1/6	¸	∓1/6	.	12.3.6.	a)	We	may	suppose	that	n	=	2.	On	the	other	hand,	let	y	∈	Br	(a)	∪	Bs	(b).	SOLUTIONS	TO	EXERCISES	CHAPTER	1	1.2
Ordered	field	axioms.	To	answer	this	question,	we	must	see	how	the	term	T	(x,	y0	)	affects	S	◦	φ(Q).	Finally,	suppose	a	<	b,	i.e.,	b	−	a	∈	P.	Since	wn	≥	xn	,	it	follows	that	wn	>	M	for	all	n	≥	N	.	Thus	x	=	−	sup(−E)	=	inf	E.	Therefore,	Ã	!	p	|xy|	x4	+	y	4	lim	,p	=	(0,	0).	(2k)2	4	k2	24	k=1	∞	∞	k=1	k=1	X	1	X	1	1	π2	π2	π2	=	−	=	−	=	.	i.e.,	lim	supN	→∞	|∆N
(x)|	≤	²M	for	all	x	∈	R.	12.5	Partitions	of	Unity.	Thus	|f	(x)	−	L|	=	|x3	+	2x	−	3|	=	|x	−	1|	|x2	+	x	+	3|	<	9δ	≤	ε	for	every	x	which	satisfies	0	√	<	|x	−	1|	<	δ.	Then	each	Sj	is	nonoverlapping	and	has	a	smooth	parametrization.	j=1	Thus	K=	N	[	N	[	Br(xj	)	(xj	)	∩	K	=	j=1	{xj	}	=	{x1	,	.	b)	Let	f	(x)	=	x2	2−x	=	x2	e−x	log	2	.	c)	Since	h	◦	g	−1	is	C	∞	for	each
chart	(U,	g)	of	M	,	it	follows	from	definition	that	h	is	a	C	∞	function	on	M	for	each	chart	(V,	h)	of	M	.	10.5.10.	Then	f	0	(0)	=	0	and	f	−1	(x)	=	3	x	has	no	derivative	at	x	=	0.	Then	0	>	−a	>	−1,	so	0	<	1	−	a	<	1.	1.2.11.	Let	M	>	0	and	choose	N	∈	N	such	that	n	≥	N	implies	xn	≥	2M/C	and	supn≥N	yn	>	C/2.	b)	By	symmetry,	we	may	suppose	that	x	=	y	=	∞.
This	implies	that	sup(A	+	B)	−	a0	<	sup	B,	so	by	the	Approximation	Property	again,	there	is	a	b0	∈	B	such	that	sup(A	+	B)	−	a0	<	b0	.	Thus	m	+	²	>	a	≥	m	as	required.	,	xN	}	be	a	partition	of	[a,	b]	whose	norm	is	<	δ	and	set	·	¸	²	²	Rj	=	[xj−1	,	xj	]	×	f	(xj	)	−	,	f	(xj	)	+	.	To	show	this	is	also	P∞	the	case	when	k=0	ak	ρk	converges	for	all	ρ	∈	(0,	1),	fix	r	<	ρ
<	1	and	observe	since	|ak	ρk	|	≤	C	for	all	k	≥	0	that	|SN	rN	|	=	|	N	X	aj	r	N	|	≤	C	j=0	N	X	rN	j=0	≤C	ρj	rN	ρN	(1	−	ρ)	for	all	N	∈	N.	5	Copyright	©	2010	Pearson	Education,	Inc.	Since	E	is	a	compact	subset	of	H	o	,	choose	δ0	>	0	such	that	x	∈	E	and	khk	<	δ0	imply	x	+	h	∈	H	o	.	On	the	other	hand,	yn+1	is	the	geometric	mean	of	xn+1	and	yn	,	so	by
Exercise	1.2.6,	yn+1	≥	yn	.	But	the	series	itself	diverges	by	the	Divergence	Test.	Set	A	=	{j	:	E	∩	[xj−1	,	xj	]	6=	∅}	and	B	=	{1,	2,	.	b)	The	proof	of	part	a)	also	proves	this	statement.	Thus	α,	β	∈	J.	On	the	other	hand,	by	L’Hˆopital’s	R1	Rule,	(1	−	cos	x)/x2	→	1/2	as	x	→	0.	13.6.4.	a)	Let	E	be	the	solid	cylinder	whose	boundary	is	S	and	F	=	(xy,	x2	−	z	2	,
xz).	3	b)	Let	φ(u,	v)	=	(u,	u3	,	v)	and	E	=	[0,	2]√×	[0,	4].	Thus	E	⊆	B	r	.	Then	T	(0,	1,	0,	0)	=	T	(1,	1,	0,	0)	−	T	(1,	0,	0,	0)	=	(5,	4,	1)	−	(a,	b,	c)	=	(5	−	a,	4	−	b,	1	−	c),	so	é	ù	a	5	−	a	1	−π	A	=	ë	b	4	−	b	2	−3	û	.	a	13.3.5.	By	Theorem	13.36,	Nψ	=	∆τ	Nφ	◦	τ	.	But	since	xn	→	a	as	n	→	∞,	there	is	an	xn	∈	Bs	(a)	∩	E.	11.3.11.	c)	[0,	∞)	is	closed	and	n	∈	[0,	∞)	is	a
sequence	which	has	no	convergent	subsequence.	c)	Let	(u,	v)	be	a	unit	vector.	a)	By	definition,	∇	·	∇u	=	∇	·	(ux	,	uy	,	uz	)	=	uxx	+	uyy	+	uzz	.	Conversely,	if	E	is	not	connected	then	there	exist	nonempty	relatively	open	subsets	U	and	V	of	E	such	that	U	∩	V	=	∅	and	E	=	U	∪	V	.	Given	²	>	0	choose	N	so	large	that	e−N	<	².	The	inequality	holds	if	8k	4	+	2k
2	<	16k	4	−	8k	2	+	1,	i.e.,	if	0	<	8k	4	−	10k	2	+	1.	R	R∞	∞	Similarly,	e	cos	x/	logp	x	dx	=	−	sin(e)	+	p	e	sin	x/(x	logp+1	x)	dx.	t→∞	tL(1	+	1/t)	h→0+	h	lim	A	similar	argument	shows	that	(ah	−	1)/h	→	1	as	h	→	0−.	Let	ψ(u)	=	u/(1	−	u)	+	log(1	−	u),	u	∈	(−∞,	1).	5.3.1.	a)	By	the	Chain	Rule	d	F	(x)	=	−	dx	Z	x2	0	f	(t)	dt	=	−f	(x2	)	·	2x.	However,	if	u	=	(1/	2,	1/
2)	then	√	√	f	(t/	2,	t/	2)	−	f	(0,	0)	1	Du	f	(0,	0)	=	lim	=	lim	t→0	t→0	t	t	does	not	exist.	a)	By	the	Weierstrass	M-Test,	φ(t)	converges	uniformly	on	(0,	t]	for	each	t	∈	(0,	∞).	Thus	a	+	c	≤	b	+	c	holds	for	all	a	≤	b.	If	u	=	x	+	1	then	du	=	dx	and	x2	=	u2	−	2u	+	1.	Thus	y	is	not	a	cluster	point	of	E.	By	part	a),	choose	I	so	that	ÃZ	!1/n	b	³	²	´	1/n	n	M−	|I|	≤	|f	(x)|	dx
≤	M	|b	−	a|1/n	.	The	result	holds	for	n	=	0	since	c0	−	b0	=	1	and	a20	+	b20	=	c20	.	Finally,	use	the	Approximation	Property	to	choose	Ck	>	0	such	that	Ck	↓	M2	as	k	→	∞	and	take	the	limit	of	kT	(x)k	≤	Ck	kxk	as	k	→	∞.	n→∞	n→∞	n→∞	n→∞	On	the	other	hand,	given	²	>	0	choose	n	∈	N	so	that	xk	>	x	−	²	for	k	≥	n.	P∞	Therefore,	σn	→	1/2	as	n	→	∞
although	k=0	(−1)k	diverges.	Hence	ex	−	1|	=	ex	2	/n	2	/n	−	1	≤	e4/n	−	1	≤	e4/N	−	1	<	ε	→	1	uniformly	on	[0,	2],	so	by	Theorem	7.10,	Z	lim	n→∞	Z	2	e	x2	/n	dx	=	0	2	dx	=	2.	Similarly,	T	(0,	1,	0)	=	(e	−	2,	π	−	2)	and	T	(0,	0,	1)	=	(e	−	1,	π	−	2).	Set	f	=	fx1	+	·	·	·	+	fxN	.	e)	It	converges	by	the	Limit	Comparison	Test,	since	√	(	k	+	π)/(2	+	k	8/5	)	→	1	6=	0
1/k	11/10	as	k	→	∞.	Therefore,	Z	Z	2π	ω=	C	0	√	π(−1	+	(−	z0	sin	t	+	z0	cos2	t	+	z0	sin	t	cos	t)	dt	=	πz0	=	2	√	5)	.	Thus	0	<	1	−	x2	=	(1	−	x)(1	+	x)	<	2δ	≤	−1/M	,	i.e.,	1/(1	−	x2	)	>	−M	.	a	Thus	the	left-most	integral	equals	zero	if	and	only	if	f	(a)g(a)	=	f	(b)g(b).	d)	The	maximum	of	1/k	for	k	∈	N	is	1.	b)	This	set	is	closed	and	bounded,	hence	compact.
Hence	by	part	a)	and	Exercise	6.1.9b,	σn	→	L	as	n	→	∞,	i.e.,	Pb)	∞	aro	summable	to	L.	Since	N	is	fixed,	k=1	ak	/(j	+	k)	→	0	as	PN	j	→	∞.	√	√	√	d)	x	sin(1/x)	is	continuous	for	x	>	0	by	Theorem	3.22.	Chapter	10	10.1	Introduction.	By	looking	at	the	graph,	we	see	that	f	(E)	=	(−∞,	∞).	42	Copyright	©	2010	Pearson	Education,	Inc.	Hence	by	the	Comparison
Test,	the	original	series	converges	when	p	>	1.	If	xn−1	>	yn−1	>	1	then	yn−1	−	xn−1	yn−1	=	yn−1	(yn−1	−	xn−1	)	>	0	so	yn−1	(yn−1	+	xn−1	)	<	2xn−1	yn−1	.	Since	there	are	infinitely	many	xnk	’s	and	they	all	belong	to	E,	a	is	by	definition	a	cluster	point	of	E.	143	Copyright	©	2010	Pearson	Education,	Inc.	2.3.4.	Case	1.	Thus	it	can	be
parameterized	by	φ(t)	=	(sin	t,	cos	t,	6),	t	∈	[0,	2π].	11.5.1.	a)	Clearly,	fx	=	2x	+	y,	fy	=	x	+	2y,	fxx	=	2,	fxy	=	1,	and	fyy	=	2.	0	0	Thus	set	h	(x)	=	P	(x,	0),	i.e.,	h(x)	=	Rx	P	(u,	0)	du.	d)	By	the	First	Multiplicative	Property,	mn−1	<	pq	−1	if	and	only	if	mq	=	mn−1	qn	<	pq	−1	nq	=	np.	10.6.3.	Let	C	be	closed	in	Y	.	Then	y	=	f	(a)	for	some	a	∈	A	\	B.	3.1.4.	a)
Let	xn	∈	I	\	{a}	converge	to	a.	Moreover,	since	g	is	uniformly	continuous	on	E	and	¯	1	1	¯¯	|g(x)	−	g(y)|	¯	−	=	≤	²−2	0	|g(x)	−	g(y)|,	g(x)	g(y)	|g(x)|	|g(y)|	1/g	is	uniformly	continuous	on	E.	Thus	by	Darboux’s	Theorem,	there	is	an	x0	between	a	and	b	such	that	f	0	(c−)	<	f	0	(x0	)	<	f	0	(c+),	a	contradiction	of	the	fact	that	f	0	is	monotone	on	(a,	b).
Publishing	as	Pearson	Prentice	Hall,	Upper	Saddle	River,	NJ	07458.	By	definition,	then,	wn	→	∞	as	n	→	∞.	8.4.11.	n→∞	n→∞	n→∞	Note,	we	used	Corollary	1.16	and	the	fact	that	the	sum	on	the	left	is	not	of	the	form	∞	−	∞.	14.5.4.	Let	g(x)	=	(f	(x+)−f	(x−))/2	for	each	x	∈	R.	This	contradicts	the	fact	that	f	0	is	1–1	on	[a,	b].	Continuing	in	this	manner,	we
can	choose	integers	k1	<	k2	<	.	c)	Since	p	/q	<	5	implies	p/q	<	5,	inf	E	=	0,	sup	E	=	5.	Hence	by	Remark	6.40,	|sn	−	s|	is	dominated	by	(1/2)n+1	/(1/2)	=	(1/2)n	for	n	≥	2.	∞	Sf	=	a0	(f	)	X	+	ak	(f	)	cos	kx	2	k=1	which	converges	uniformly	and	absolutely	on	R	by	the	Weierstrass	M-Test	and	part	c).	In	particular,	given	²	>	0	there	is	a	δ	>	0	such	that	|x	−	y|
<	δ	and	x,	y	∈	[0,	1]	imply	¯∞	¯	¯X	¯	¯	k	k	k	¯	¯	(−1)	ak	(x	−	y	)¯	=	|f	(x)	−	f	(y)|	<	².	∂E	E	E	c)	This	follows	immediately	from	Gauss’	Theorem	since	by	Exercise	13.5.8	and	part	a),	∇	·	(u∇v	−	v∇u)	=	∇u	·	∇v	+	u∆v	−	∇v	·	∇u	−	v∆u	=	u∆v	−	v∆u.	c)	Let	h	=	π/2n+1	.	Suppose	that	the	result	holds	for	some	integer	n	≥	1	and	let	φ	:	{1,	2,	.	Thus	the	absolute
minimum	of	f	on	H	is	f	(1,	0)	=	1	and	the	absolute	maximum	of	f	on	H	is	f	(1,	2)	=	17.	Pn	P∞	6.1.6.	a)	Let	sn	:=	k=1	ak	.	Since	Br	(x)	also	intersects	Ac	∪	B	c	,	it	must	be	the	case	that	Br	(x)	intersects	Ac	.	But	P∞|ak	|	2≤	1	implies	|ak	|	≤	|ak	|.	,	aN	such	that	H⊆	N	[	Braj	(aj	).	In	particular,	f	0	(y),	a	sum	of	zeros,	is	itself	zero.	b)	See	the	proof	of	Theorem
9.2.	10.1.4.	a)	If	xn	=	a	for	all	n,	then	ρ(xn	,	a)	=	0	is	less	than	any	positive	ε	for	all	n	∈	N.	n→∞	0	Thus	f	is	integrable	on	[0,	1]	and	its	integral	equals	I.	Publishing	as	Prentice	Hall.	Then	there	exist	points	xk	∈	B1/k	(x)	∩	E	for	each	k	∈	N.	Then	for	all	x0	,	Z	1	Z	1	2	(x2	+	2x)	dx	=	6=	0	=	(x0	+	2)	x	dx.	A	similar	argument	establishes	an	analogous	identity
for	lower	integrals.	136	Copyright	©	2010	Pearson	Education,	Inc.	Similarly,	E	∩	V	6=	∅.	Hence	we	may	set	hz	=	xz	and	g	=	0,	i.e.,	P	=	xz	2	/2	and	R	=	0.	Then	by	the	triangle	inequality,	|f	(x)	−	Q(x)|	<	ε	for	all	x	∈	[a,	b].	f	0	(x2	)	4.5.9.	Since	f	is	1–1	and	f	0	(x)	6=	0	for	each	x	∈	(a,	b),	we	have	for	each	y	=	f	(x),	x	∈	(a,	b),	that	(f	−1	)0	(y)	=	1/f	0	(x)	by
Theorem	4.33.	If	x	<	x0	,	choose	r,	q	∈	Q	such	that	q	<	x	<	x0	<	r	and	r	−	q	<	2δ	=	1/N	.	Then	the	limits	infimum	are	both	−1,	the	limits	supremum	are	both	1,	but	xn	+	yn	=	0	→	0	as	n	→	∞.	Then	µ	¶	µ	¶	m	X	(−1)k	1	1	1	1	1	≡	−	−	−	···	−	−	.	p	c)	Let	x0	=	0,	x2n	=	1,	and	xk	=	y2n	−k	for	0	<	k	<	2n	,	where	yk−1	=	(2k	+	1)π/2.	∞	If	k=0	ak	=	L	then	sn	→
L	as	n	→	∞.	3	13.2.3.	a)	Let	C1	represent	the	horizontal	piece	and	C2	represent	the	vertical	piece.	10.6.2.	a)	f	(0,	1)	=	(0,	1)	is	open,	no	big	deal;	f	[0,	1)	=	[0,	1)	is	neither	open	nor	closed;	f	[0,	1]	=	[0,	1]	is	compact	and	connected	as	Theorems	10.61	and	10.62	say	it	should.	Then	¯	¯	¯	¯	Z	Z	¯	¯	¯	¯	1	1	¯	¯	¯	¯	f	(x)	dx	−	f	(x0	)¯	=	¯	(f	(x)	−	f	(x0	))	dx¯	¯	¯	Vol
(Br	(x0	))	Br	(x0	)	¯	¯	Vol	(Br	(x0	))	Br	(x0	)	¯	Z	1	≤	|f	(x)	−	f	(x0	)|	dx	Vol	(Br	(x0	))	Br	(x0	)	Z	²	<	dx	=	².	If	xn	=	(−1)n	and	yn	=	0	then	lim	inf	(xn	+	yn	)	=	−1	<	1	=	lim	sup	xn	+	lim	inf	yn	.	c)	By	part	b),	{s2n	}	is	increasing	and	bounded	above	by	s1	=	1,	{s2n+1	}	is	decreasing	and	bounded	below	by	sP	2	=	1/2,	and	s2n+1	−	s2n	→	0	as	n	→	∞.	However,
since	(2k	+	1)/(2k	+	4)	=	1	−	(3/2)/(k	+	2),	the	series	converges	by	Raabe’s	Test.	Finally,	if	x	∈	/	V	,	then	x	∈	/	Ixj	for	any	j,	so	f	(x)	=	0	+	·	·	·	+	0	=	0.	By	the	Extreme	Value	Theorem,	there	exist	xM	,	xm	∈	[a,	b]	such	that	f	(xm	)	=	α	:=	inf{f	(x)	:	x	∈	[a,	b]}	and	f	(xM	)	=	β	:=	sup{f	(x)	:	x	∈	[a,	b]}.	Since	U	⊆	E	implies	U	o	⊆	E	o	(see	Exercise	8.4.3),	it
follows	that	x	∈	/	U	o.	14.2.8.	By	Theorem	9.49,	f	is	continuous	almost	everywhere,	hence	by	Fej´er’s	Theorem,	σN	f	→	f	almost	everywhere	as	N	→	∞.	6.2.10.	0	Let	²	>	0.	What	happens	at	(0,	0)?	Hence,	it	converges	if	and	only	if	|x	|	<	2,	i.e.,	if	and	only	if	x	∈	(−	3	2,	3	2).	No	a	∈	R	satisfies	a	<	b	−	ε	for	all	ε	>	0,	so	the	inequality	is	vacuously	satisfied.
7.5.3.	The	proof	is	by	induction	on	n.	R1	R0	R1	b)	Since	−1	dx/x2	=	−1	dx/x2	+	0	dx/x2	,	this	integral	diverges	by	Exercise	5.4.2b.	Since	K	:=	φ(spt	φj	)	is	a	compact	subset	of	φ(Wj	),	and	φjP	◦	φ−1	vanishes	off	K,	it	is	clear	that	−1	∞	n	−1	−1	φ	◦	φ	∈	C	(R	),	φ	◦	φ	≥	0,	and	spt	(φ	◦	φ	)	⊂	φ(W	).	h→0	h2	h	c)	If	we	start	with	(*)	and	reverse	the	roles	of	x	and
y,	we	have	lim	h→0	∆(h)	=	fxy	(a,	b).	b)	Let	(a,	b,	c)	be	a	nonzero	vector	in	the	plane	z	=	x	orthogonal	to	(1,	−1,	0).	5.2	Riemann	Sums.	11.2.4.	By	definition,	f	(h,	0)	−	f	(0,	0)	h	fx	(0,	0)	=	lim	=	lim	=	h→0	h→0	sin	|h|	h	½	1	−1	as	h	→	0+	as	h	→	0−.	We	conclude	that	f	0	(x1	)(f	−1	(x)	−	f	−1	(a))	=	f	(x)	−	f	(a)	.	It	is	not	√	it	is	contained	√	compact	since	we	if
we	choose	rationals	an	↓	2	and	bn	↑	3,	then	{(an	,	bn	)	∩	Q	is	a	countably	infinite	open	covering	of	E	which	has	no	finite	subcover.	4	0	=	0	0	6	15.3.2.	Since	d(	0	π	n	X	0	dj	.	If	Fz	(a,	b,	c)	=	0	then	one	of	the	other	partials	of	F	is	nonzero,	say	Fx	(a,	b,	c)	=	0.	c)	By	the	Product	Rule,	(xn	Bn	(x))0	=	xn	Bn0	(x)	+	nxn−1	Bn	(x)	∞	∞	X	X	(−1)k	(n	+	2k)	³	x
´n+2k−1	(−1)k	n	³	x	´n+2k−1	=	xn	+	xn	2k!(n	+	k)!	2	2k!(n	+	k)!	2	=	xn	k=0	∞	X	k=0	k=0	(−1)	(n	+	k)	³	x	´n+2k−1	=	xn	Bn−1	(x).	Let	P	:=	R+	.	Let	f	(k)	=	1/2k	and	k	f	(x)	dx	≥	1/k.	1.2.2.	a)	Suppose	0	≤	a	<	b	and	0	≤	c	<	d.	Since	f	0	(t)	=	−6x/(4t	−	3x)2	<	0	for	all	t	and	u	is	increasing	in	u,	thepsequence	sin	x	2k/(4k	−	3x)	is	decreasing	for	each	x	∈
[0,	π/2].	n	1	1	1	Since	f	is	Rabsolutely	integrable	on	[1,	∞),	this	last	integral	converges	to	0	as	n	→	∞.	Hence	by	the	Completeness	Axiom,	this	set	has	a	finite	supremum.	Since	Br	(x)	intersects	B,	it	follows	that	Br	(x)	⊆	B	for	small	r	>	0.	To	determine	whether	this	is	a	maximum	or	a	minimum,	notice	that	the	discriminant	of	F	(x,	y)	:=	ax	+	by	+	cDx2	+
cEy	2	is	4c2	DE.	j	dx	dxj	k=1	14.3.5.	a)	Let	k	≥	j	≥	0.	Thus	Ex	is	nonempty.	We	obtain	κ(φ(t))	=	k(1,	f	0	(t),	0)	×	(0,	f	00	(t),	0)k	|f	00	(t)|	=	.	Since	z	=	y,	the	projection	√	√of	∂S	onto	the	xy	plane	is	given	by	x2	+	2y	2	=	1.	b)	By	Theorem	1.42,	there	are	countably	many	polynomials	with	integer	coefficients.	This	contradiction	proves	that	cos(1)	is
irrational.	10.3.3.	Let	y	∈	V	=	{x	∈	X	:	s	<	ρ(x,	a)	<	r}	and	let	²	<	min{ρ(y,	a)	−	s,	r	−	ρ(y,	a)}.	Since	f	is	integrable,	there	is	an	M	>	0	such	that	|f	(x)|	≤	M	for	all	x	∈	[0,	1].	n	Since	Z	Z	∞	∞	f	(x)	dx	=	n	it	follows	that	n	dx	≤	x	logp	(x	+	1)	Z	∞	n	dx	1	=	,	x	logp	(x)	(p	−	1)	logp−1	(n)	1	1	n+p−1	|s	−	sn	|	≤	+	≤	n	logp	(n	+	1)	(p	−	1)	logp−1	(n)	n(p	−	1)	µ	1	¶
logp−1	(n)	.	Therefore,	V	=	ka	×	bk	·	h	=	ka	×	bk	kck	|(a	×	b)	·	c|	=	|(a	×	b)	·	c|.	Hence	by	definition,	x	is	the	supremum	of	E.	It	is	open	but	not	connected.	2	2	2	Hence	by	induction	and	a),	0	<	xn+1	−	yn+1	<	(x1	−	y1	)/2n	.	By	the	Commutative	Property	of	real	numbers,	x	+	y	=	(x1	,	.	But	if	we	translate	this	back	into	²–δ	k→∞	p	language,	we	conclude
that	k	|bk	|	→	r	as	k	→	∞.	4.3.5.	By	the	Mean	Value	Theorem,	|f	(x)	−	1|	=	|f	(x)	−	f	(0)|	=	|(x	−	0)f	0	(c)|	=	|x|	·	|f	0	(c)|	for	some	c	∈	(0,	x).	Since	f	is	continuous	and	periodic,	we	have	by	Exercise	14.2.4	that	SN	f	→	f	uniformly	on	R.	Therefore,	Q	satisfies	Postulate	1.	∞	d)	By	part	b)	L{f	}(s)	=	(s	−	a)	0	e−(s−a)t	φ(t)	dt	so	by	Theorem	11.9,	Z	∞	Z	∞	L{f	}0
(s)	=	e−(s−a)t	φ(t)	dt	−	(s	−	a)	e−(s−a)t	tφ(t)	dt	0	0	Z	∞	=	e−(s−a)t	φ(t)(1	−	(s	−	a)t)	dt.	By	the	Binomial	Formula,	1	=	2n	µ	1	a−2	+	a	2a	¶n	n	µ	¶	n	µ	¶	X	X	n	1	(a	−	2)n−k	n	(a	−	2)n−k	=	=	.	Since	g(x)	>	f	(x),	it	is	clear	that	x	∈	Bf	(x)	(x)	⊂	Bf	(x)	(x)	⊂	Bg(x)	(x)	for	all	x	∈	E.	Thus	f	0	(c1	)	<	0	<	f	0	(c2	).	b)	By	definition,	x	×	x	=	(x2	x3	−	x2	x3	,	x1	x3	−
x1	x3	,	x1	x2	−	x1	x2	)	=	0,	and	x	×	y	=	(x2	y3	−	x3	y2	,	x3	y1	−	x1	y3	,	x1	y2	−	x2	y1	)	=	−(−x2	y3	+	x3	y2	,	−x3	y1	+	x1	y3	,	−x1	y2	+	x2	y1	)	=	−y	×	x.	..	b)	If	{xn	}	is	decreasing,	then	−xn	is	increasing,	so	part	a)	applies.	√	Then	n	≥	N	implies	|xn	/n|	≤	M/n	√	≤	M/N	<	ε.	But	h	→	0+	implies	that	y	→	0+	hence	t	→	∞.	P∞	b)	If	E	=	{x1	,	.	By	induction,
there	are	infinitely	many	points	in	E	∩	(a	−	r,	a	+	r).	If	p	≤	0,	then	the	series	diverges	by	the	Divergence	Test.	,	aN	}	is	a	partition	of	[a,	b]	and	Q	=	{c0	,	.	d)	The	set	E	=	B1	(0,	0)	∪	B1	(3,	0)	∪	{(x,	0)	:	1	≤	x	≤	2}	is	connected	in	R2	,	but	E	o	=	B1	(0,	0)	∪	B1	(3,	0)	is	not.	Therefore,	00	φ0	(t0	)	×	φ00	(t0	)	=	(ν	0	(`(t0	))	·	kφ0	(t0	)k)	×	(ν	00	(`(t0	))kφ0	(t0
)k2	+	ν	0	(`(t0	))kφ0	(t0	)k0	)	=	kφ0	(t0	)k3	(ν	0	(s0	)	×	ν	00	(s0	)).	Therefore,	lim	h→0+	f	(−x	+	h)	−	f	(−x)	f	(x	−	h)	−	f	(x)	f	(x	+	h)	−	f	(x)	=	lim	=	lim	=	f	0	(x),	h→0+	h→0−	h	−h	h	i.e.,	the	right	derivative	of	f	at	−x	equals	f	0	(x).	there	is	an	xn	>	n	satisfying	f	(xn	)	≥	L	+	²0	or	f	(xn	)	≤	L	−	²0	,	does	not	converge	to	L	as	n	→	∞.	The	function	g(x)	=	f	(x)	for
x	∈	(a,	b)	and	g(a)	=	f	(a+)	is	continuous	on	[a,	x]	for	every	x	∈	(a,	b).	Let	n	>	N0	and	write	f	(n)	=	(f	(n)	−	f	(n	−	1))	+	·	·	·	+	(f	(N0	+	1)	−	f	(N0	))	+	f	(N0	).	Since	m	+	²	is	not	a	lower	bound	of	E,	there	is	an	a	∈	E	such	that	m	+	²	>	a.	,	xn	)	=	x2	xn	,...,	a	−	x1	a	−	x1	Then	(U,	g),	(V,	h)	are	(n	−	1)–dimensional	charts	which	cover	the	sphere.	|α|	+	1	b)	See
Theorem	2.12.	Therefore,	by	Dini’s	Theorem	and	Theorem	7.10,	√	Z	lim	k→∞	r	π/2	sin	x	0	2k	dx	=	4k	−	3x	r	Z	π/2	r	1	1	sin	x	dx	=	.	Thus	y	=	E(x)	7.2.4.	The	series	converges	uniformly	on	R	by	the	Weierstrass	M–Test.	n!	Since	n	is	odd,	(c	−	b)n	/n!	<	0	and	(c	−	a)n	/n!	>	0.	4.3.7.	By	the	Monotone	Property	for	Suprema,	F	is	increasing	on	[a,	b].	It	follows
from	Theorem	12.4	that	E	is	a	Jordan	region	and	it	has	area	zero.	j=1	9.2.5.	Let	x	∈	E.	f)	It	converges	by	the	Root	Test,	since	√	k	ak	≡	3	+	(−1)k	5	√	k	ak	≡	3	−	(−1)k	π	has	a	limit	supremum	of	4/5.	10.5.3.	a)	Let	I	and	J	be	connected	in	R.	P∞	P∞	k	b)	False.	To	prove	part	b),	let	x	∈	U	∩	∂A	and	suppose	for	a	moment	that	x	∈	E	o	.	Thus	E	has	no	boundary
if	and	only	if	E	is	clopen.	Thus	Z	b	Z	2π	A(S)	=	a	√	2v	du	dv	=	√	2π(b2	−	a2	).	from	(x1	,	y1	,	z1	)	and	θ	represent	the	angle	between	w	:=	(x0	−	x2	,	y0	−	y2	,	z0	−	z2	)	and	the	normal	(a,	b,	c)	of	Π.	In	particular,	spt	(f	g)	⊆	spt	f	∩	spt	g.	Since	the	given	series	is	uniformly	convergent	by	the	Weierstrass	M-Test,	it	remains	to	show	that	this	series	is	the
Fourier	series	of	f	.	Set	k0	=	φ(n	+	1)	and	define	ψ	by	½	`	`	<	k0	ψ(`)	=	`−1	`	>	k0	.	4.3.1.	a)	Let	f	(x)	=	ex	−	2x	−	0.7.	Since	x	≥	1,	f	0	(x)	=	ex	−	2	>	0.	11.7.4.	By	Remark	11.51,	∇g(b)	=	0,	hence	by	the	Chain	Rule,	∇(g	◦	f	)(a)	=	∇g(b)Df	(a)	=	0.	Since	L(1)	=	0	and	L(e)	=	1,	we	also	have	E(0)	=	1	and	E(1)	=	e.	Therefore,	wxx	(x2	,	t2	)	−	wt	(x2	,	t2	)	=
wxx	(x2	,	t2	)	≥	0,	a	contradiction.	U	(f,	P	)	=	0.5f	(0)	+	0.5f	(0.5)	+	f	(1)	=	39/8.	A	similar	argument	works	for	inf	E.	Let	x	∈	(0,	π/2].	In	particular,	x	∈	E.	Therefore,	the	original	expression	is	rational	if	and	only	if	n	=	1.	xn	=	(1	+	(−1)n	)n	satisfies	xn	=	0	for	n	odd	and	xn	=	2n	for	n	even.	e	Since	ex	is	continuous,	we	conclude	that	an	→	4/e	as	n	→	∞.
Similarly,	|bk	(f	)|	≤	1/k	2	for	k	large.	Hence	by	Abel’s	Theorem,	f	is	uniformly	continuous	on	[0,	1].	√	√	b)	Take	the	limit	of	xn+1	=	2	+	xn	−	2	as	n	→	∞.	The	root	is	less	than	or	equal	to	1/2	for	k	≥	N	=	1	by	Example	4.30.	We	shall	use	the	Ratio	Test.	By	hypothesis,	C	:=	lim	supn→∞	yn	>	0.	By	the	Limit	Comparison	√	P∞	P∞	2p	Test,	only	if	k=1	√	1/k	p
converges,	i.e.,	if	and	only	if	p	>	1.	2	−	k2	2	−	k2	ak	(f	)	=	14.2.5.	a)	If	P	(x)	=	Pn	k=0	ak	xk	then	Z	n	X	b	P	(x)f	(x)	dx	=	a	Z	b	ak	k=0	xk	f	(x)	dx	=	0.	In	particular,	it	follows	from	assumption	ii)	that	sin	x/x	→	1	as	x	→	0.	Hence	it	converges	to	0	as	(x,	y)	→	(1,	1)	by	the	Squeeze	Theorem.	Therefore,	by	telescoping	we	obtain	∞	X	log(k(k	+	2)/(k	+	1)2	)	=
log(2/3)	−	lim	log(k/(k	+	1))	=	log(2/3).	¯	0	k!	¯	n!	0	k=0	R1	Since	0	x2k	/k!	dx	=	1/((2k	+	1)k!),	this	completes	the	proof	of	part	a).	Therefore,	P∞	k=1	bk	(f	)/k	converges.	A(S)	=	−π	−π	13.3.2.	a)	The	trivial	parameterization	is	(φ,	E),	where	φ(u,	v)	=	(u,	v,	u2	−	v	2	)	and	E	=	{(u,	v)	:	−1	≤	u	≤	1,	−|u|	≤	v	≤	|u|}.	f	(x)	≤	g(x).	Therefore,	the	original	series
converges	if	and	only	if	x	∈	[−3,	−1].	By	construction	xk	∈	E	and	xk	→	x	as	k	→	∞.	5.3.0.	a)	True.	Since	cos	x	is	nonnegative	when	(4k	−	1)π/2	≤	x	≤	(4k	+	1)π/2	for	some	k	∈	Z,	it	follows	that	[	f	−1	(E)	=	[(4k	−	1)π/2,	(4k	+	1)π/2].	Then	τ	0	(u)	=	1/(b	−	a)	>	0	and	τ	(I)	=	[0,	1].	Vol	(E)	+	1	119	Copyright	©	2010	Pearson	Education,	Inc.	8.4.6.	a)	If	E	is
connected	in	R	then	E	is	an	interval,	hence	E	o	is	either	empty	or	an	interval,	hence	connected	by	definition	or	Theorem	8.30.	Thus	by	Theorem	2.36,	lim	supn→∞	|xn	|	=	0.	Suppose	n	n	X	X	xk	xk	1	≤	x	<	+	n.	Hence	it	follows	from	the	Quotient	Rule	and	assumption	iii)	that	µ	¶0	sin	x	cos2	x	+	sin2	x	(tan	x)0	=	=	=	sec2	x.	Indeed,	by	Stirling’s	Formula,	µ
ek	k!	kk	¶	√	√	/	k	→	2π	6=	0	as	k	→	∞.	For	the	case	α	<	0,	xn	>	M	implies	αxn	<	αM	.	If	y	∈	Bs	(b)	then,	since	x	∈	Br	(a)	∩	Bs	(b),	we	have	ρ(x,	y)	≤	ρ(x,	b)	+	ρ(b,	y)	<	s	+	s	=	2s	<	d.	In	particular,	f	is	1–1	(actually	monotone	increasing)	on	I.	12.5.6.	Since	H	is	a	Jordan	region,	choose	a	grid	{Q`	}N	`=1	of	a	rectangle	R	⊃	H	such	that	X	|Q`	|	0.	10.4.3.
Since	E	is	compact,	it	is	bounded	by	Theorem	10.46.	Let	x	∈	[a,	b]	and	n	≥	N	.	n−2	x0	=	0	<	x1	=	If	P	=	{x0	,	x1	,	.	Thus	f	is	continuous	on	R.	2	2.3.10.	p	b)	Since	k	1/k	k	=	1/k	→	0	as	k	→	∞,	this	series	converges	by	the	Root	Test.	1.4	Mathematical	Induction.	Suppose	for	a	moment	that	the	projection	function	fk	(x)	=	xk	has	a	limit	as	x	→	a	and	satisfies
fk	(x)	→	fk	(a)	as	x	→	a	for	each	k	∈	{1,	.	Let	y	∈	R	with	y	6=	x,	and	set	²	=	|x	−	y|/2.	Since	k=0	1/((2k+1)k!)	=	1.4626713,	it	follows	from	part	a)	that	R	1	x2	R1	2	1.4626613	<	0	e	dx	<	1.4626813.	9.3.5.	Let	ε	=	1	and	choose	δ	>	0	such	that	0	<	kx	−	ak	<	δ	implies	kf	(x	−	Lk	<	1.	a)	By	the	one-dimensional	Mean	Value	Theorem,	∆(h)	=	hfy	(a	+	h,	b	+	th)
−	hfy	(a,	b	+	th)	for	some	t	∈	(0,	1),	and	(*)	∆(h)	=	hfx	(a	+	uh,	b	+	h)	−	hfx	(a	+	uh,	b)	for	some	u	∈	(0,	1).	Given	ε	>	0,	choose	M	∈	R	such	that	x	>	M	implies	f	(x)	>	1/ε.	b)	Suppose	u(x1	,	t1	)	=	−`	<	0	for	some	(x1	,	t1	)	∈	H	0	.	Finally,	φ(0)	=	(0,	0)	and	dy/dx	→	0	as	t	→	0.	105	Copyright	©	2010	Pearson	Education,	Inc.	Indeed,	if	M	>	1,	then	set	r	=
min{ρ(yj	,	yk	)	:	j,	k	∈	[1,	M	]}	and	notice	that	the	Br	(yj	)’s	are	open,	nonempty,	and	disjoint,	hence	separate	f	(X).	Since	α	6=	β,	it	follows	that	f	(c)	=	0	for	all	c	∈	[a,	b].	c)	Suppose	f	is	continuous	at	0	and	x	∈	R.	0	RR	Therefore,	S	ω	=	8π	+	0	=	8π.	c)	The	Lagrange	equations	are	y	=	2xλ	+	µ,	x	=	2yλ	+	µ,	and	0	=	2zλ	+	µ.	Thus	we	get	equality	in	the
Cauchy-Schwarz	inequality	if	and	only	if	kx	−	tyk	=	0,	i.e.,	if	and	only	if	x	=	ty.	Let	C	>	0	satisfy	|f	(x)|	≤	C	for	x	∈	I.	x	>	0.	89	Copyright	©	2010	Pearson	Education,	Inc.	√	√	√	5.4.5.	By	Exercise	5.4.2b,	1/	x	is	integrable	on	(0,	1),	but	1/x	=	(1/	x)(1/	x)	is	not.	Since	a,	b,	c	do	not	lie	on	the	same	straight	line,	Remark	8.10	implies	that	d	:=	(a	−	b)	×	(a	−	c)
is	nonzero.	Similarly,	vx	=	f	0	(x	−	y)	+	g	0	(x	+	y),	vy	=	−f	0	(x	−	y)	+	g	0	(x	+	y),	and	vxx	−	vyy	=	f	00	(x	−	y)	+	g	00	(x	+	y)	−	(f	00	(x	−	y)	+	g	00	(x	+	y))	=	0.	,	xk+1	are	distinct	points	in	E	∩	Br	(a).	The	second	component	factors:	¯	2	¯	¯	¯	¯	x	y	−	2xy	+	y	−	(x	−	1)2	¯	¯	(y	−	1)(x	−	1)2	¯	¯	¯=¯	¯	¯	x2	+	y	2	−	2x	−	2y	+	2	¯	¯	(x	−	1)2	+	(y	−	1)2	¯	≤	|y	−
1|.	By	Definition	3.1,	there	is	a	δ	>	0	such	that	0	<	|x	−	a|	<	δ	implies	f	(a)	−	ε	<	f	(x)	<	f	(a)	+	ε.	Therefore,	ω(f,	π/k)	→	0	as	k	→	∞	and	it	follows	from	part	b)	that	ak	(f	)	and	bk	(f	)	converge	to	zero	as	k	→	∞.	Since	T	is	linear,	if	the	components	of	f	are	differentiable,	then	f	(x	+	h)	−	f	(x)	−	T	(h)	f	(x	+	h)	−	f	(x)	0	=	−	T	(1)	=	(f10	(x),	.	Thus	the	original
expression	cannot	be	rational	when	n	>	9.	11.5.7.	Set	E	=	Br	(0).	1.6	Countable	and	uncountable	sets.	is	open	as	Theorem	10.58	says	it	should;	f	−1	[0,	π]	=	.	See	Example	3.7.	c)	False.	c)	By	the	Ratio	Test,	this	series	converges	when	|x|	<	1	and	diverges	when	|x|	>	1.	By	Theorem	11.30,	there	is	a	c	between	x	and	x	+	h	such	that	²h	(x)	:=	φ(x	+	h)	−
φ(x)	−	Df	(x)(h)	=	(Dφ(c)	−	Dφ(x))(h).	Since	sin(x/n)	>	0	for	n	≥	3,	we	have	g(x)	:=	sin(x/n)	+	x	+	1	+	x	+	1	>	1	+	1	=	2	for	n	≥	3.	an	=	1	and	bn	=	1/n	are	Cauchy,	but	an	/bn	=	n	does	not	converge,	hence	cannot	be	Cauchy	by	Theorem	2.29.	c)	Using	the	trivial	parameterization	z	=	ZZ	p	a2	−	x2	−	y	2	,	we	see	that	Nφ	=	(x/z,	y/z,	1)	points	upward.
3.1.2.	a)	If	xn	=	4/((2n	+	1)π),	then	xn	→	0	but	tan(1/xn	)	=	(−1)n	has	no	limit.	b)	Any	subset	of	R	which	contains	0	and	1	will	satisfy	the	Associative	and	Commutative	Properties,	the	Distributive	Law,	and	have	an	additive	identity	0	and	a	multiplicative	identity	1.	In	particular,	y	∈	f	(E).	Thus	ak	bk	is	nonnegative	and	dominated	by	M	ak	.	Suppose	P	is	a
polynomial	of	degree	n	>	1,	i.e.,	P	(x)	=	an	xn	+	·	·	·	+	a1	x	+	a0	,	an	6=	0.	Thus	bx	:=	(1/b)−x	defines	bx	,	and	by	parts	a)	and	c),	bx	is	a	continuous	extension	of	bq	from	Q	to	R	which	satisfies	the	exponential	properties.	Thus	the	original	series	converges	by	the	Alternating	Series	Test.	Hence	by	Lemma	1.40,	B	is	at	most	countable,	a	contradiction.
Then	f	(x)	∈	f	(E),	so	by	definition,	x	∈	f	−1	(f	(E)).	c)	By	the	Bolzano–Weierstrass	Theorem	and	Theorem	10.16,	every	closed	bounded	subset	is	sequentially	compact.	Conversely,	suppose	x	∈	U	∩	∂E.	9.6.4.	Let	h	>	0	and	t	∈	R.	Then	n	≥	N	implies	n2	(2	+	sin(n3	+	n	+	1))	≥	n2	·	1	≥	N	2	>	M	.	Hence	by	L’Hˆopital’s	Rule,	L(e)	=	limn→∞	1/(1	+	1/n)	=	1.
Thus	cos((log	k	+	x)/(k	+	x))	→	cos	0	=	1	uniformly	on	[0,	1]	as	k	→	∞.	Hence	by	Theorem	14.29,	Sg	converges	to	g	uniformly	on	[a,	b]	and	pointwise	on	(−π,	π).	10.6.8.	a)	By	the	proof	of	Lemma	3.38,	if	f	is	uniformly	continuous,	then	f	takes	a	Cauchy	sequence	in	X	to	a	Cauchy	sequence	in	Y	.	b)	The	maximum	of	x	−	1	on	[0,	1]	is	0	and	the	minimum	of	x
+	1	on	[0,	1]	is	1.	Then	C	>	0,	M	≤	C,	and	m	≥	−C.	Let	E	:=	{k	∈	N	:	2n	b	≤	k}.	If	f	(x)	=	x	+	100	and	g(x)	=	x2	,	then	|f	0	/g	0	|	=	|1/x|	≤	1	for	x	∈	(1,	∞),	but	(x	+	100)/x2	is	not	less	than	or	equal	to	1	when	x	=	2.	Since	m0	is	least	in	E,	it	follows	that	m0	−	1	<	2n	b,	i.e.,	q	<	b.	a)	Suppose	E	is	polygonally	connected	but	some	pair	of	open	sets	U,	V
separates	E.	Let	a	=	0,	f	(x)	=	x,	and	g(x)	=	1/x2	for	x	6=	0	and	g(0)	=	0.	Therefore,	x	∈	/	∂E,	a	contradiction.	Since	f	0	(x)	=	(1	−	x)/(2	x(x	+	1)2	)	<	0	for	x	>	1,	f	is	strictly	decreasing	on	(1,	∞).	2.3.6.	a)	Suppose	that	{xn	}	is	increasing.	But	by	l’Hˆopital’s	Rule,	√	2	u	−	u3	lim	p	=	lim	=	0.	By	the	Chain	Rule,	0	=	wx	=	Fx	+	Fz	zx	and	0	=	wy	=	Fy	+	Fz	zy
on	V	×	f	(V	),	hence	zx	=	−Fx	/Fz	and	zy	=	−Fy	/Fz	.	P	∞	Since	k=1	a+	k	=	∞,	choose	an	integer	k1	∈	N	least	such	that	+	+	sk1	:=	b1	+	b2	+	·	·	·	+	bk1	:=	a+	1	+	a2	+	·	·	·	+	ak1	>	y.	Then	n	≥	N	implies	n2	−	n	=	n(n	−	1)	≥	N	(N	−	1)	>	M	(2	−	1)	=	M	.	9.5.2.	Let	A,	B	be	compact	sets.	for	all	|p|	<	1/e.	Since	E	is	open,	choose	r	>	0	such	that	Br	(x)	⊂	E.
0	|x|	π	k	kπ	156	Copyright	©	2010	Pearson	Education,	Inc.	Thus	by	the	Comparison	Theorem	and	u-substitution,	√	f	(	x)	dx	≤	2	Z	4	1	√	Z	2	f	(	x)	√	dx	=	4	f	(u)	du	=	20.	g	−1	(0,	π)	=	(0,	∞)	is	open,	no	big	deal;	g	−1	[0,	π]	=	[0,	∞)	is	closed–note	that	Exercise	9.4.4	does	not	apply	since	g	is	not	continuous;	g	−1	(−1,	1)	=	{0}	is	not	open	and	we	don’t
expect	it	to	be;	g	−1	[−1,	1]	=	R	is	closed–note	that	Exercise	9.4.4	does	not	apply	since	g	is	not	continuous.	Z	Z	1	Z	1	12.3.1.	a)	1	(x	+	y)	dx	dy	=	0	Z	3	Z	1	b)	0	Z	Z	π	0	√	2	3	xy	+	x	dx	dy	=	0	Z	π	c)	(1/2	+	y)	dy	=	1.	√	√	√	√	√	1.3.3.	a	<	b	implies	a	√−	2	<	b	−	2.	Taking	the	limit	of	this	inequality	as	²	→	0,	we	conclude	that	Vol	(E1	∪	E2	)	≥	Vol	(E1	)	+	Vol
(E2	).	On	the	2	2	other	hand,	f	0	(0)	:=	limh→0	(e−1/h	−	0)/h	=	limh→0	(1/h)/e1/h	=	0.	Since	ρ(xkj	,	a)	<	1/j,	xkj	converges	to	a.	To	show	it	vanishes	at	infinity,	let	²	>	0.	It	follows	that	(1	+	x/n)n	→	ex	uniformly	on	[a,	b].	a)	Given	x	∈	V	choose	²	:=	²x	>	0	such	that	B²	(x)	⊆	V	.	3.1.3.	a)	By	Remark	3.4	and	Theorem	3.8,	x2	+	2x	−	3	(x	+	3)(x	−	1)	x+3	4	=
lim	=	lim	=	=	2.	2	c	2	c	p	p	√	It	follows	that	f	(x)	≤	(Mk	(f	)	−	mk	(f	))/(2	c)	+	f	(y)	for	all	x	∈	[xk−1	,	xk	].	Thus	this	ball	is	a	square	with	vertices	(1,	1),	(1,	−1),	(−1,	−1),	and	(−1,	1).	It	follows	from	Remark	10.45	that	A	∩	B	is	compact.	In	general,	set	Sj	=	φ(Ej	\	(∪j−1	k=1	Ek	).	2	(a	+	x1	)	(a	+	x1	)2	a	+	x1	xj	xj	a	+	x1	gj	(x)	=	=	Pn	.	If	f	(x0	)	>	0	for	some
x0	∈	[a,	b]	then	by	the	Sign	Preserving	Property	there	is	a	nondegenerate	interval	[c,	d]	⊂	[a,	b]	such	that	f	(x)	>	²0	Rd	for	x	∈	[c,	d].	Thus	ZZ	Z	2π	Z	π/2	ω=	S	(a	cos	u	cos	v,	a	sin	u	cos	v,	0)·	0	Z	0	2π	Z	·	(a2	cos	u	cos2	v,	a2	sin	u	cos2	v,	a2	sin	v	cos	v)	dv	du	π/2	=	0	a3	cos3	v	dv	du	0	Z	π/2	=	2πa3	cos	v(1	−	sin2	v)	dv	=	0	4πa3	.	,	M	}	covers	PM	E	and
j=1	|Rj	|	<	².	10.5.8.	a)	By	Remark	10.11,	∅	and	X	are	clopen.	Thus	∞	(SF	)(x)	=	a0	(F	)	X	bk	(f	)	+	cos	kx.	√	In	particular,	S	◦φ(Q)	is	a	subset	of	a	cube	with	sides	s(1+	nM	²).	By	telescoping,	we	have	∞	X	k=2	Since	a1	=	2/3,	we	conclude	that	1	ak	=	2	∞	X	k=1	ak	=	µ	¶	1	−0	6	=	1	.	Substituting	these	values	for	λ	and	µ	into	2	2	the	first	two	Lagrange
equations,	we	obtain	2y	=	6x	√	y	+	x	and	2x	=	6y	x	+	y,	i.e.,3	y	=	±x.	4	c)	Let	ε	>	0	and	let	δ	=	ε/3.	105	3	d)	This	region	is	the	set	of	points	√	“under”	the	cubical	cylinder	y	=	x	which	lies	“over”	the	region	in	the	xz	2	plane	bounded	by	z	=	x	and	z	=	x.	Cross	multiplying,	we	obtain	4x2	<	4x2	−	1,	i.e.,	this	case	is	empty.	Since	|R|	=	|x	+	R|	for	any
rectangle	R,	it	follows	from	Theorem	12.4	that	A	is	of	volume	zero	if	and	only	if	x	+	A	is	of	volume	zero.	k=0	ak	is	Ces`	Pn−1	c)	Since	sn	=	k=0	(−1)k	is	1	when	n	is	odd	and	0	when	n	is	even,	the	corresponding	averages	are	given	by	½	σn	=	(n	+	1)/(2n)	1/2	when	n	is	odd	when	n	is	even.	c)	By	vector	algebra	and	Cauchy-Schwarz,	|x	·	(y	−	z)	−	y	·	(x	−
z)|	=	|(y	−	x)	·	z|	≤	kx	−	yk	kzk	<	2	·	3	=	6.	j=1	k=1	6.3.7.	a)	Since	ak	→	∞,	|ak	|	<	1	for	k	large.	e)	It	converges	by	the	Root	Test,	since	|ak	|1/k	=	(k	−	1)!	(k	−	1)!	1	<	=	→0	k!	+	1	k!	k	as	k	→	∞.	Hence	x/n	→	0	uniformly	on	[a,	b].	11.5.12.	Let	ε	>	0	and	let	Gm	be	the	dyadic	grid	of	Exercise	12.1.1	with	m	so	large	that	2−m	<	ε.	Hence	it	follows	from
definition	that	|ak+1	/ak	|	>	1/r	=	rkP	/rk+1	for	k	large,	say	k	≥	N	.	11.2.6.	The	function	has	continuous	first	partials	at	any	(x,	y)	6=	(0,	0),	hence	is	differentiable	there	by	Theorem	11.15.	Thus	f	(c)	=	0.	x→x0	x→x0	3.2.4.	a)	If	g(x)	→	∞	as	x	→	a,	then	given	M	∈	R,	choose	δ	>	0	such	that	0	<	|x	−	a|	<	δ	implies	g(x)	>	M	.	In	particular,	f	(n)	exists	and	is
continuous	on	R	for	all	n	∈	N	and	f	(n)	(0)	=	0.	Observe	that	t	=	τ	(u)	implies	u	=	a	+	(b	−	a)t	and	set	ψ(t)	=	φ(a	+	(b	−	a)t)	for	t	∈	[0,	1].	c)	Choose	h	6=	0	small	enough	so	that	f	(a	+	h)	6=	0.	13.1.2.	Since	φ0	(t)	=	a	6=	0,	C	is	smooth.	Hence	by	the	Heine–Borel	Theorem,	E	is	compact.	Thus	if	A	is	open,	then	f	−1	(V	)	is	relatively	open	in	A	if	and	only	if
it	is	open	in	Rn	.	Hence	φ(W	)	is	an	open	set	containing	H	and	φj	◦	φ−1	=	0	on	φ(W	)	for	all	j	≥	N	.	It	follows	from	the	proof	of	Corollary	11.34,	applied	to	f	−	S,	that	kf	(x)−S(x)−f	(a)+S(a)k2	≤	kf	(x)−S(x)−f	(a)+S(a)k	kD(f	−S)(c)(x−a)k	=	kf	(x)−S(x)−f	(a)+S(a)k·0	=	0	for	all	x	∈	V	.	Thus	the	expansion	is	valid	for	x	∈	[0,	2].	Then	n	≥	N	implies	(n2	+	1)/n
=	n	+	1/n	>	N	+	0	>	M	.	Since	the	−a−	`	’s	are	nonpositive,	it	is	clear	that	s`	≤	sk1	≤	y	+	bk1	for	k1	<	`	≤	r1	,.	c)	Given	²	>	0	choose	M	>	0	so	large	that	sup{|f	(x)|,	|g(x)|	:	x	∈	E}	≤	M	.	Thus	an	equation	is	x	−	y	+	2z	+	5w	=	1.	Since	y	6=	0,	|yn	|	≥	|y|/2	for	large	n.	31	Copyright	©	2010	Pearson	Education,	Inc.	Let	f	(x)	=	sin(1/x)	and	g(x)	=	1.	Pn−1
Pm	2.4.4.	Let	sn	=	k=1	xk	for	n	=	2,	3,	.	Let	f	(x)	=	1	for	all	dyadic	rationals	x	∈	(0,	1),	f	(x)	=	1/2	for	all	triadic	rationals	x	∈	(0,	1),	i.e.,	rationals	of	the	form	x	=	p/3q	,	p,	q	∈	N,	f	(x)	=	3/4	for	all	rationals	x	∈	(0,	1)	of	the	form	x	=	p/5q	,	p,	q	∈	N,	f	(x)	=	1/4	for	all	rationals	x	∈	(0,	1)	of	the	form	x	=	p/7q	,	p,	q	∈	N,	etc.	Then	a	=	c	and	0	=	(a,	b,	c)	·	(1,	−1,
0)	=	a	−	b,	i.e.,	such	a	vector	must	have	the	form	(a,	a,	a),	a	6=	0.	d)	Apply	part	b)	to	u	=	v.	Then	it	follows	from	part	a)	that	∞	X	k=0	ak	rk	≥	(1	−	r)	∞	X	Sk	rk	≥	(1	−	r)M	k=N	∞	X	rk	=	M	rN	.	b)	Similarly,	by	Theorem	2.9ii	f	(xn	)g(xn	)	→	0	for	all	xn	∈	I	\	{a}	which	converge	to	a.	Thus	∇f	(a,	b,	c)	and	∇g(a,	b,	c)	are	parallel,	i.e.,	æ	ö	i	j	k	(0,	0,	0)	=	∇f	(a,
b,	c)	×	∇g(a,	b,	c)	=	det	è	fx	(a,	b,	c)	fy	(a,	b,	c)	fz	(a,	b,	c)	ø	.	0	4.1.3.	Clearly,	|fα	(x)|	≤	|x|α	.	14.5	Uniqueness.	2	0	2	b)	Since	f	0	(0)	>	0	and	f	0	is	continuous,	f	0	(x)	>	0	for	x	in	some	[0,	a],	a	>	0.	4.4.9.	a)	Let	f	(x)	=	sin(x	+	π).	Thus	V	(G(f	),	G)	≥	1	6=	0	for	all	grids	G.	Clearly,	K	is	compact	and	{Ix	}x∈K	is	an	open	covering	of	K.	Thus	the	solution	is
(−1/2,	1/2).	Then	n	≥	N	and	x	∈	[a,	b]	imply	|x/n|	≤	max{|a|,	|b|}/N	<	².	The	trace	looks	like	a	sine	wave	traced	vertically	on	the	plane	y	=	x.	Therefore,	Bn	−	b	converges	to	0	as	n	→	∞.	To	show	that	g	is	continuous	on	X,	let	²	>	0	and	choose	δ	>	0	such	that	x,	y	∈	D	and	ρ(x,	y)	<	δ	imply	τ	(f	(x),	f	(y))	0,	|x	cos	y/	3	1	−	x	+	y|	≤	1/	3	1	−	x	+	y	<	1/	3	1	−	x
and	Z	1	√	3	0	¯1	3	dx	3	=	−	(1	−	x)2/3	¯0	=	<	∞.	,	xn	)	=	x2	xn	,...,	a	+	x1	a	+	x1	¶	µ	and	h(x1	,	.	x→a	|x	−	a|	|x	−	a|	|x	−	a|	Thus	(f	(x)	−	f	(a))/|x	−	a|	→	Df	(a)	as	x	→	a+	and	(f	(x)	−	f	(a))/|x	−	a|	→	−Df	(a)	as	x	→	a−,	i.e.,	kf	(x)	−	f	(a)k/|x	−	a|	→	kDf	(a)k	as	x	→	a.	3.1.0.	a)	True.	14.2	Summability	of	Fourier	Series.	p	p	k	k	We	conclude	from	part	c	that	lim
sup	|b	|	=	lim	inf	|b	k	k→∞	k	|	=	r.	Finally,	if	H	is	a	compact	subset	of	φ(V	)	then	φ−1	(H)	is	a	compact	subset	of	V	.	√	b)	If	these	surfaces	intersect,	then	z	=	1	−	z	2	,	i.e.,	z	=	(−1	±	5)/2.	Since	E	is	sequentially	compact,	choose	xnk	→	b	as	k	→	∞.	b)	If	x	6=	0,	then	the	norm	of	x/kxk	is	1,	so	°	µ	¶°	kT	(x)k	°	x	°	°	≤	M1	.	We	obtain	k=1	ak	bk	=	k=1	sk	(bk	−
bk−1	).	In	particular,	y	∈	f	(E)	as	required.	e)	Since	a	>	0	implies	loga	x	≥	1	for	x	≥	0,	f	(x)	≥	xp	for	all	x	∈	[1,	∞).	Hence	by	Theorem	8.32,	Ao	⊆	B	o	.	√	d)	By	the	Archimedean	Principle,	given	ε	>	0	there	is	an	N	∈	N	such	that	N	>	1/	3ε.	5.3.12.	Let	U	:=	Ux0	and	V	:=	∪{Uy	:	Uy	∩	Ux0	=	∅}.	Let	δ	>	0	be	so	small	that	δ/²0	<	r2	and	suppose	|f	(x0	)|	≤	δ.
Thus	ZZ	Z	Z	2π	Z	1	π	F	·	n	dσ	=	−	(u,	v,	u2	+	v	2	)	·	(−2u,	−2v,	1)	d(u,	v)	=	r3	dr	dθ	=	.	Suppose	that	neither	x	nor	y	is	zero.	Since	φ(0)	=	x0	and	φ(1)	=	x0	+	a,	C	contains	x0	and	x0	+	a.	Notice	that	Df	(a)(y)	∈	R3	so	this	cross-	product	makes	sense	under	the	identification	of	3	×	1	matrices	with	vectors	in	R3	.	Thus	Py	=	fy	and	we	may	set	f	=	0,	Qx	=	1.
Then	(f	∨	g)(x)	=	g(x)	and	|f	(x)	−	g(x)|	=	g(x)	−	f	(x)	so	f	(x)	+	g(x)	+	|f	(x)	+	g(x)|	2g(x)	=	=	g(x)	=	(f	∨	g)(x).	36	Copyright	©	2010	Pearson	Education,	Inc.	By	Taylor’s	Formula,	x2	y2	+	fxy	(a,	b)xy	+	fyy	(a,	b)	2!	2!	x3	x2	y	xy	2	3	+	fxxx	(c,	d)	+	fxxy	(c,	d)	+	fxyy	(c,	d)	+	fyyy	(c,	d)y	3!	2!	2!	f	(a	+	x,	b	+	y)	=	f	(a,	b)	+	fx	(a,	b)x	+	fy	(a,	b)y	+	fxx	(a,	b)	for
some	(c,	d)	∈	L((a,	b);	(a	+	x,	b	+	y)).	Chapter	14	14.1	Introduction.	√Taking	the√supremum	over	x	∈	[xk−1	,√	xk	]	and	then	the	infimum	over	y	∈	[xk−1	,	xk	],	we	have	proved	that	Mk	(	f	)	−	mk	(	f	)	≤	(Mk	(f	)	−	mk	(f	))/(2	c)	for	k	=	1,	2,	.	If	Pz	=	2z	and	Rx	=	0,	then	P	=	z	2	+	f	(x,	y)	and	R	=	g(y,	z).	Therefore,	E	is	neither	compact	nor	is	it	contained	in
any	compact	set.	If	x	∈	/	[−M,	M	]	then	|fk	(x)−f	(x)|	≤	|fk	(x)|+|f	(x)|	≤	2|f	(x)|	<	².	Consequently,	p	|hk|	f	(h,	k)	−	f	(0,	0)	−	Df	(0,	0)	·	(h,	k)	=√	.	If	kx	−	ak	≤	δ	then	by	Theorem	8.5,	|fj	(x)	−	fj	(a)|	=	|xj	−	aj	|	<	δ	=	².	k=1	Pn	Pn−1	6.4.5.	By	Abel’s	Formula,	k=1	ak	bk	=	bn	sn	+	k=1	sk	(bk	−	bk−1	).	Taking	the	supremum	of	this	last	inequality	over	all	kxk
=	1,	we	conclude	that	M1	≤	M2	.	Pn	¡	¢	Pn	¡	¢	1.4.2.	a)	0	=	(1	−	1)n	=	k=0	nk	1n−k	(−1)k	=	k=0	nk	(−1)k	.	Thus	M	=	1	and	f	(x)	=	f	(x1	)	for	all	x	∈	K.	Thus	|	cos	x	−	P2n	(x)|	≤	1/(2n	+	1)!	for	x	∈	[−1,	1].	Moreover,	since	f	and	φ	are	onto,	given	b	∈	B	there	is	an	a	∈	A	such	that	f	(a)	=	b,	and	an	x	∈	Z	such	that	φ(x)	=	a,	hence	ψ(x)	≡	f	(φ(x))	=	f	(a)	=	b.	,
bk1	=	a+	k1	,	bk1	+1	=	−a1	,	.	10.5.11.	Since	E	=	E	∪	∂E,	it	follows	from	the	sequential	characterization	of	continuity	and	our	construction	that	g	is	a	continuous	extension	of	f	to	E.	By	Theorem	3.6,	f	(qn	)	→	f	(x0	).	A	similar	argument	shows	there	is	an	x2	>	x0	such	that	f	0	(x2	)	<	0.	∞	Now	|xn+1	−	xm	|	≤	|xn+1	−	xn	|	+	·	·	·	+	|xm+1	−	xm	|	≤
k=m+1	rk+1	=	rm+2	/(1	−	r).	e)	By	parts	c)	and	d),	Vol	(E1	∪	E2	)	=	Vol	((E1	\	(E1	∩	E2	))	∪	(E2	\	(E1	∩	E2	))	∪	(E1	∩	E2	))	=	Vol	(E1	)	+	Vol	(E2	)	−	2Vol	(E1	∩	E2	)	+	Vol	(E1	∩	E2	).	If	R	<	r0	<	r	then	it	follows	that	ak	r0	≤	M	(r	P0∞	k	k	large.	Hence	by	the	Bolzano–Weierstrass	Property,	there	is	an	a	∈	X	such	that	xnk	→	a	as	k	→	∞.	Thus	n	≥	N	and
the	triangle	inequality	imply	¯	¯	µ	¶	¯	e	¯¯	e	|(x2n	−	e)/xn	−	(1	−	e)|	≡	|xn	−	1|	¯¯1	+	≤	|x	−	1|	1	+	<	|xn	−	1|(1	+	2e)	<	ε.	,	and	sin(kπ/2)	=	0	when	k	=	2,	4,	.	Since	f	is	continuous,	the	hypothesis	implies	|f	(x)|	=	0	for	all	x	∈	(a,	b),	i.e.,	f	=	0	on	(a,	b).	b)	By	Theorem	1.14,	there	is	an	a	∈	E	such	that	sup(−E)	−	²	<	−a	≤	sup(−E).	Similarly,	ak	(f	(x	−	h))	=
ak	(f	)	cos	kh	−	bk	(f	)	sin	kh.	i.e.,	f	−1	(x)	=	(x	+	|x	−	2|	−	|x	−	4|)/3.	Since	δ	<	1,	|x	−	2|	<	δ	implies	|x	+	1|	<	7.	10.5.9.	Let	E	be	a	nonempty,	proper	subset	of	X.	3	−π/2	3	C1	√	To	parameterize	C2	,	set	ψ(t)	=	(cos	t,	−	cos	t,	sin	t/	3)	and	J	=	[π/2,	3π/2].	Thus	by	part	c),	Z	1	x	dy	dz	+	y	dz	dx	+	z	dx	dy	3	∂E	Z	π	¡	¢	2π	=	b(a	+	b	cos	v)2	cos	v	+	b2	(a	+	b
cos	v)	sin2	v	dv	3	−π	¢	2π	¡	=	0	+	2ab2	π	+	0	+	ab2	π	+	0	=	2π	2	ab2	.	But	E	is	closed,	so	the	limit	of	the	xj	’s,	namely	a,	must	belong	to	E,	a	contradiction.	Hence	I	∩	J	is	empty	or	an	interval,	hence	connected	by	definition	or	Theorem	10.56.	5.4	Improper	Riemann	Integration.	We	conclude	by	Theorem	7.12	that	∞	X	dj	f	dj	(x)	=	(ak	(f	)	cos	kx	+	bk	(f	)
sin	kx).	By	Exercise	2.5.6a	and	Theorem	2.36,	lim	sup(xn	yn	)	≤	(lim	sup	xn	)(lim	sup	yn	)	=	x	lim	sup	yn	.	2k	+	2	Hence	ak+1	≥	ak	>	0,	so	the	series	diverges	by	the	Divergence	Test.	Since	Dφ	is	uniformly	continuous	on	H,	there	is	a	0	<	δ	<	min{1,	δ0	}	such	that	khk	<	δ	and	x,	x	+	h	∈	H	imply	kDφ(x	+	h)	−	Dφ(x)k	<	².	Thus	by	the	Binomial	Formula,
(a	+	b)n	=	n	µ	¶	n	µ	¶	X	X	n	n−k	k	n	n−k	k	a	b	=	an	+	nan−1	b	+	a	b	=:	an	+	nan−1	b	+	C.	3.2.3.	a)	The	result	holds	for	n	=	0,	1	by	Example	3.2.	Hence	by	Theorem	3.8,	lim	xn	=	(	lim	x)n	=	xn0	x→x0	x→x0	for	all	n	∈	N.	Hence	by	Theorem	2.36,	the	limit	exists	and	equals	zero.	12	c)	This	boundary	has	two	pieces,	the	circle	C1	described	by	x2	+	y	2	=
4,	z	=	4,	oriented	in	the	clockwise	direction	when	viewed	from	high	up	the	positive	z	axis,	and	the	circle	C2	described	by	x2	+	y	2	=	1,	z	=	1,	oriented	in	the	counterclockwise	direction	when	viewed	from	high	up	the	positive	z	axis.	a	Rb	Rb	Taking	the	infimum	of	this	inequality	over	all	partitions	P1	and	P2	,	we	obtain	(U	)	a	(f	(x)+g(x))	dx	≤	(U	)	a	f	(x)
dx+	Rb	(U	)	a	g(x)	dx.	c)	|x3	−	3x	+	1|	<	x3	if	and	only	if	−x3	<	x3	−	3x	+	1	<	x3	if	and	only	if	3x	−1	>	0	and	2x3	−3x	+1	>	0.	Apply	part	a)	to	²	:=	`/2	−	rt1	to	choose	a	compact	set	K	⊂	H	0	such	that	u(x,	t)	≥	−²	on	H	\	K.	By	Exercise	5.3.10,	f	(xn	)	is	locally	integrable	on	[1,	∞).	If	y	∈	/	f	(A	∩	B)	then	a	∈	/	B	and	b	∈	/	A.	We	conclude	by	the	choice	of	P
that	p	p	U	(f,	P	)	−	L(f,	P	)	√	U	(	f	,	P	)	−	L(	f	,	P	)	≤	<	ε.	2	c	5.1.10.	Apply	the	Chain	Rule	twice	and	the	Product	Rule	once:	(g	◦	f	)00	(a)	=	(g	0	(f	(a))	·	f	0	(a))0	=	(g	00	(f	(a))	·	f	0	(a))	·	f	0	(a)	+	g	0	(f	(a))	·	f	00	(a)	=	g	0	(f	(a))f	00	(a)	+	g	00	(f	(a))(f	0	(a))2	.	√	√	1.2.5.	a)	Suppose	a	>	2.	3	144	Copyright	©	2010	Pearson	Education,	Inc.	d)	If	g(x)	≥	²0	>	0,
then	1/g	is	continuous	on	E	and	bounded	by	1/²0	.	Hence	√	½	(1	−	1	−	4x2	)/2x	x	6=	0	f	−1	(x)	=	0	x	=	0.	√	2	2	2	1/	2	13.6.5.	Let	F	=	(P,	Q,	R)	and	φ(u,	v)	=	(u,	v,	0).	b)	The	trivial	parameterization	of	z	=	y	3	,	x2	+	y	2	≤	3,	has	normal	(0,	−3y	2	,	1),	whose	induced	orientation	on	C	is	counterclockwise	(the	wrong	way).	Moreover,	g	is	continuous	by	the
Sequential	Characterization	of	Limits.	Thus	ac	≤	bc	holds	for	all	a	≤	b	and	c	≥	0.	Since	f	is	1–1,	a	=	f	−1	({y}).	Hence	by	definition,	f	(x)	=	P∞	by(k)Theorem	k	(0)x	/k!	for	x	∈	R.	If	k	>	N	:=	max{N1	,	N2	},	then	k	log(k	+	1)	−	log	k,	1/2k	)	−	(0,	0)k2	=	log2	((k	+	1)/k)	+	1/22k	<	ε2	/4	+	1/k	2	<	ε2	.	Hence	by	Stokes’s	Theorem	and	Exercise	5.1.4,	Z	ZZ	F	·
T	ds	=	curl	F	·	n	dσ	=	0	∂S	S	implies	F	·	T	=	0	everywhere	on	∂S.	Therefore,	1	∂	2	u	1	∂u	∂	2	u	+	+	2	=	fxx	+	fyy	=	0.	a	c)	By	part	b)	and	Exercise	5.1.4,	f	2	(x)	=	0	for	all	x	∈	[a,	b],	thus	f	(x)	=	0	for	all	x	∈	[a,	b].	Thus	either	a	>	b,	b	>	a,	or	a	=	b.	Hence	these	quantities	are	equal.	Since	−n	∈	N,	we	have	by	algebra	and	part	a	that	xn	−	xn0	x−n	−	x−n	n	n
=	0	·	x	x0	→	nx−n−1	·	x2n	=	nxn−1	.	Since	1/k	lim	sup	|aα	=	lim	sup	|ak	|α/k	=	a0	k|	k→∞	k→∞	P∞	by	Remark	6.22iii	and	a0	<	1,	it	follows	from	the	Root	Test	that	k=1	aα	k	is	absolutely	convergent.	Clearly,	the	set	of	polynomials	with	rational	coefficients	is	countable.	On	the	114	Copyright	©	2010	Pearson	Education,	Inc.	If	x	∈	(A	∩	∂B)	∪	(B	∩	∂A),
then	there	is	nothing	to	prove.	Let	x,	y	∈	[0,	∞)	and	suppose	|x	−	y|	<	δ.	3.3.6.	Let	f	(x)	=	1	if	x	∈	Q,	f	(x)	=	0	if	x	∈	/	Q,	and	g(x)	=	1	−	f	(x).	Thus,	since	xn	→	∞	as	n	→	∞,	we	have	2xn	>	xn	for	n	large,	hence	2−xn	max{M,	2}.	10.4	Compact	Sets.	Conversely,	suppose	C	⊆	E	contains	all	its	limit	points	which	stay	in	E.	a)	Let	x	∈	R.	Using	the
parameterization	φ(t)	=	(	3	cos	t,	3	sin	t,	0),	t	∈	[0,	2π],	we	have	by	Stokes’s	Theorem	that	ZZ	Z	2π	curl	F	·	n	dσ	=	S	0	√	√	√	√	(	3	sin	t,	0,	3	sin	t)	·	(−	3	sin	t,	3	cos	t,	0)	dt	Z	=	−3	2π	sin2	t	dt	=	−3π.	b)	Since	¯	¯	¯	¯	¯	(−1)(−3)	.	By	definition,	f	(x)	∈	I.	2	2	1−x	Thus	the	original	integral	converges	uniformly	on	(0,	∞)	by	the	Weierstrass-M	Test.	It	follows
that	the	sequence	x2	f	(k/(k	2	+	x))	is	decreasing	for	each	x	∈	[0,	1]	for	k	≥	k0	.	Since	¯	¯	µ	¶p	¯	ak+1	¯	1	¯	¯≡	1	k+1	→	¯	ak	¯	|p|	k	|p|	P∞	as	k	→	∞,	k=1	k	p	/pk	converges	absolutely	when	|p|	>	1	and	diverges	when	|p|	<	1.	Chapter	11:	Differentiability	on	Rn	11.1	11.2	11.3	11.4	11.5	11.6	11.7	Partial	Derivatives	and	Partial	Integrals……………………………
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Education,	Inc.	Let	f	(x)	=	kxk.	Without	loss	of	generality,	we	suppose	the	former.	E	o	=	{(x,	y)	:	y	>	x2	,	0	<	y	<	1},	E	=	{(x,	y)	:	y	≥	x2	,	0	≤	y	≤	1},	and	∂E	=	{(x,	y)	:	y	=	x2	,	0	≤	y	≤	1}	∪	{(x,	1)	:	−1	≤	x	≤	1}.	∂S	S	13.6.8.	Suppose	i)	holds.	√	√	√	√	g)	Multiplying	top	and	bottom	by	(	x2	+	2	+	x2	)(	2x2	−	1	+	2x2	)	we	obtain	√	p	√	√	√	2	−	1/x2	+	2	2	2x2
−	1	+	2x2	√	p	√	→	−2	2	=	−2	√	−1	1	+	2/x2	+	1	x2	+	2	+	x2	as	x	→	∞.	By	the	quadratic	formula,	y	=	f	(x)	implies	x	=	(1	±	1	−	4y	2	)/2y.	1	(3	−	x	−	y)	dy	dx	=	2	−1	p	p	b)	The	curves	x	=	y/2	and	y	=	x2	/4	intersect	at	(0,	0),	y	=	3	−	x	and	y	=	x2	/4	at	(2,	1),	x	=	y/2	and	y	=	3	−	x	at	(1,	2).	Solving	for	x,	we	obtain	x	=	xn−1	−	f	(xn−1	)/f	0	(xn−1	)	as
promised.	P∞	2	d)	True.	N	→∞	2N	π	0	N	→∞	2N	sin(u/2N	)	π	0	u	Using	either	power	series	or	Simpson’s	Rule,	we	can	show	that	this	last	integral	is	approximately	1.179.	1.6.5.	a)	Repeat	the	proof	in	Exercise	1.6.4	without	referring	to	N	and	Z.	Thus	f	takes	its	maximum	on	[a,	b]	at	x	=	b.	Apply	the	Product	Rule	twice:	(f	gh)0	=	(f	g)0	h	+	(f	g)h0	=	f	0	gh
+	f	g	0	h	+	f	gh0	.	Since	f	is	increasing,	f	(x)	≤	f	(sup	E)	for	every	x	∈	E.	Since	K	is	compact	and	is	covered	by	{Br(x)	(x)}x∈K	,	there	exist	x1	,	.	Hence	by	Dini’s	Theorem	the	series	converges	uniformly	on	[a,	b]	and	can	be	integrated	term	by	term.	By	Exercise	11.2.8,	Dg(t)	=	u	for	all	t	and	by	definition,	h0	(0)	=	lim	t→0	f	(a	+	tu)	−	f	(a)	=	Du	f	(a).
Hence	|ak	|p	≤	|ak	|	for	k	large	and	it	follows	from	the	P0∞as	k	→	p	Comparison	P∞	Test	that	k=1	|ak	|	converges.	A	similar	proof,	using	part	a)	in	place	of	Corollary	10.59,	shows	that	f	−1	(A)	∩	E	is	relatively	closed	in	E	for	all	relatively	closed	sets	A	in	f	(E).	Finally,	if	y	=	3	−	x,	1	≤	x	≤	3,	then	f	(x,	y)	=	2x2	−	12x	+	27	takes	its	minimum	at	x	=	3,	an
extreme	point	of	H.	On	the	other	hand,	f	is	not	continuous	because	along	the	path	x	=	0	the	limit	is	zero,	but	along	the	path	y	=	x2	the	limit	is	1/2.	Then	f	is	uniformly	continuous	on	(0,	∞)	and	g	is	positive	and	bounded,	but	f	(x)g(x)	is	not	continuous	at	x	=	2	so	cannot	be	uniformly	continuous.	b)	Set	Bn	=	(b1	+	·	·	·	+	bn	)/n.	Thus	f	(x)	=	0+0+·	·	·+0	=
0.	Therefore,	lim	inf	(xn	+	yn	)	≤	lim	sup	xn	+	lim	inf	yn	.	e)	By	parts	c)	and	d),	gn	(x)	:=	f	(x)	+	x/n	is	increasing	on	(a,	b).	By	the	choice	of	r0	,	xk	belongs	to	E	∩	Br	(a)	and	is	distinct	from	the	xj	’s,	1	≤	j	<	k.	By	algebra	and	telescoping	∞	X	(ak	−	ak+2	)	=	k=1	∞	X	(ak	−	ak+1	)	+	k=1	∞	X	(ak+1	−	ak+2	)	=	(a1	−	a)	+	(a2	−	a).	In	particular,	√	x	−	log	x
−	0.6	≥	f	(4)	=	2	−	log	4	>	0.	Thus	x∈	/	∂U	,	a	contradiction.	Thus	y	6=	f	(b)	for	any	b	∈	B.	Hence	it	follows	from	the	P∞Monotone	Convergence	Theorem	and	hypothesis	that	xn	converges	to	a	finite	real	number	as	n	→	∞,	i.e.,	k=1	ak	bk	is	absolutely	convergent.	,	xn	)	6=	0}	is	open.	On	the	other	hand,	if	xn	=	1	−	1/n,	then	xn	→	1	and	1/	log	xn	→	−∞	as
n	→	∞.	11.1.11.	Since	f	(x)	:=	sin	x	−	2x/π	has	no	local	minima	in	[0,	π/4]	and	f	(0)	=	0	<	f	(π/4),	we	also	have	sin	x	≥	2x/π	for	x	∈	[0,	π/4].	Hence	dist	(A,	B)	=	ρ(x0	,	y0	)	>	0.	Thus	there	is	a	δ	>	0	such	that	|x	−	y|	<	δ	and	x,	y	∈	[0,	N	]	implies	|f	(x)	−	f	(y)|	<	²/3.	k	k+1	k	k+1	k	k+1	k=1	6.1.3.	a)	cos(1/k	2	)	→	cos	0	=	1.	7.5.5.	Suppose	there	exist	q,	p	∈	N



such	that	p	∞	∞	X	X	X	q	(−1)2k	(−1)k	(−1)k	=	cos(1)	=	=	+	.	Since	Mj	(f	+	g)	≤	Mj	(f	)	+	Mj	(g),	we	have	Z	b	(U	)	(f	(x)	+	g(x))	dx	≤	U	(f	+	g,	P	)	≤	U	(f,	P	)	+	U	(g,	P	)	≤	U	(f,	P1	)	+	U	(g,	P2	).	Suppose	not,	i.e.,	that	F	(c)	−	limx→c−	F	(x)	=:	ε0	>	0.	Then	k/(k	2	+	x)	≤	k/(k	√	+	0)	=	1/k	<	a	for	k	≥	k0	.	8.3.2.	Let	y	∈	V	=	{x	∈	Rn	:	s	<	kx	−	ak	<	r}	and	let	²
<	min{ky	−	ak	−	s,	r	−	ky	−	ak}.	If	xn	→	−∞	as	n	→	∞,	then	choose	N	∈	N	such	that	n	≥	N	implies	xn	<	−1/ε.	1.3.1.	a)	Since	x2	+	2x	−	3	=	0	implies	x	=	1,	−3,	inf	E	=	−3,	sup	E	=√1.	10.1.10.	√	√	2.2.8.	a)	Take	the	limit	of	xn+1	=	1	−	1	−	xn	,	as	n	→	∞.	In	particular,	we	conclude	that	f	(x)/g(x)	→	∞	=	B	as	x	→	a	through	I.	Since	0	≤	x|	sin(1/x)|	≤	x,	it
follows	from	the	Squeeze	Theorem	that	f	(x)	→	0	=:	f	(0)	as	x	→	0+.	a)	If	ψ(t)	=	ta	+	b,	then	ψ	0	(t)	=	a	and	`(t)	=	kak(t	−	t0	)	for	all	t.	∂u	∂v	∂u	∂v	∂u	∂v	Therefore,	µ	¶2	µ	¶2	µ	¶µ	¶	µ	¶2	µ	¶2	∂x	∂y	∂x	∂y	∂x	∂y	∂x	∂y	−2	+	∂u	∂v	∂u	∂v	∂v	∂u	∂v	∂u	µ	¶2	µ	¶2	µ	¶µ	¶	µ	¶2	µ	¶2	∂x	∂z	∂x	∂z	∂x	∂z	∂x	∂z	+	−2	+	∂u	∂v	∂u	∂v	∂v	∂u	∂v	∂u	µ	¶2	µ	¶2	µ	¶µ	¶	µ	¶2	µ	¶2	∂y	∂z
∂y	∂z	∂y	∂z	∂y	∂z	+	−2	+	∂u	∂v	∂u	∂v	∂v	∂u	∂v	∂u	µ	¶2	µ	¶2	∂x	∂y	∂x	∂y	∂x	∂z	∂x	∂z	=	−	+	−	∂u	∂v	∂v	∂u	∂u	∂v	∂v	∂u	µ	¶2	∂y	∂z	∂y	∂z	+	−	=	kNψ	k2	.	Hence	it	follows	from	the	Limit	Comparison	Test	that	P∞	k/(k	+	1)	diverges.	Thus	f	00	(0)	=	0	exists.	e)	Integrating	by	parts,	we	have	Z	∞	L(f	0	)(s)	=	f	0	(t)e−st	dt	Z	¯∞	=	f	(t)e−st	¯0	+s	0	∞	f	(t)e−st	dt	0	=	−f
(0)	+	sL(f	)(s).	Now	f	(xkj	∈	Bεc0	(a)	so	xkj	∈	f	−1	(Bεc0	(a))	∩	B.	Since	each	Vα	contains	at	most	one	xβ	,	it	follows	that	E	is	countable,	a	contradiction.	βn	−	αn	βn	−	αn	Hence,	by	the	Squeeze	Theorem,	the	right	side	of	part	a)	converges	to	0	+	0	=	0.	Therefore,	by	the	product	theorem	(Corollary	5.23),	1	f	◦	φ	=	f	◦	φ	·	φ0	0	φ	0	is	integrable	on	[a,	b].
Moreover,	since	φ	is	nonzero,	its	reciprocal	is	continuous	on	[a,	b],	hence	integrable	there.	Thus	the	trace	of	φ(t)	lies	in	the	fourth	quadrant	and	is	asymptotic	to	the	line	y	=	−x	as	t	→	−1−.	Since	9!	=	362,	880	and	11!	=	39,	916,	800,	it	follows	that	n	≥	5.	b)	False.	S	∂S	13.6.3.	a)	Since	div	F	=	x2	+	y	2	+	z	2	,	we	have	by	Gauss’	Theorem	that	ZZ	ZZZ	Z
2π	(x2	+	y	2	+	z	2	)	dV	=	F	·	n	dσ	=	S	B1	(0,0,0)	0	Z	0	π	Z	1	ρ4	sin	ϕ	dρ	dϕ	dθ	=	4π/5.	Suppose	E	is	not	connected.	6.5.2.	a)	p	>	1	(see	Exercise	6.2.4).	Thus	∪x∈[0,1]	[x−2,	x+1]	=	[−2,	2].	Thus	set	a	:=	xN	.	3	√	R	π/2	R1	c)	Using	the	substitution	u	=	sin	x,	du	=	cos	x	dx,	we	have	0	cos	x/	3	sin	x	dx	=	0	u−1/3	du	=	3/2.	By	looking	at	the	graph,	we	see	that
f	(E)	=	(1,	∞).	60	Copyright	©	2010	Pearson	Education,	Inc.	Thus	xP∈	E	if	and	only	if	x	has	a	ternary	expansion	whose	digits	never	1.	3.3.0.	a)	True.	Then	xn−1	=	2xn−1	1	+	xn−1	2	<	=	xn	<	=	1.	Since	1/2n	≈	0.00098	for	n	=	10	and	≈	0.00049	for	n	=	11,	choose	n	=	11.	Therefore,	0	(1	−	cos	x)/x2	dx	is	a	Riemann	integral.	Hence	1	−	a	is	real	and	by
(6),	1	−	a	<	1	−	a.	Hence	by	Theorem	14.29,	Sf	converges	to	f	almost	everywhere	on	[−π,	π].	Hence,	Vol	(φ(Qj	))	≤	C²	|∆φ	(x)|	<	|∆φ	(x)|	+	η	|Qj	|	for	j	large.	3	2	b)	Since	cos	x	=	(1	+	cos	2x)/2,	we	have	by	orthogonality	that	a0	(cos2	x)	=	1/2,	a2	(cos2	x)	=	1/2,	and	all	other	Fourier	coefficients	of	cos2	x	are	zero.	√	b)	Let	φ(t)	=	(−1,	cos	t,	sin	t/	2)	and	I	=
[0,	2π].	e)	Let	L	=	0	and	suppose	that	ε	>	0.	d)	Since	the	minimum	of	x2	+	x	−	1	on	(−1,	0)	is	−1.25,	−1	<	x	<	0	implies	|x3	−	2x	+	1|	=	|x2	+	x	−	1|	|x	−	1|	<	5|x	−	1|/4.	Similarly,	x0	∈	V	also	leads	to	a	contradiction.	Since	N	X	N	|Rj	|	=	j=1	²	X	|xj	−	xj−1	|	=	²,	b	−	a	j=1	we	conclude	by	Theorem	12.4	that	Vol	(G(f	))	=	0.	If	{Vα	}	is	an	open	covering	of	A
∪	B,	then	it	is	a	covering	of	A	and	B.	If	S	is	oriented,	we	can	repeat	the	entire	process	making	sure	that	not	only	are	the	(φx	,	Ex	)	smooth,	but	also	“orientable.”	13.5	Theorems	of	Green	and	Gauss.	If	A	is	at	most	countable,	then	by	Lemma	1.40	there	is	a	function	f	which	takes	N	onto	A.	,	n	+	1},	then	φ	takes	{1,	2,	.	11.1.10.	Thus	f	(xn	)	→	0	as	n	→	∞,
and	f	(a)	:=	0	continuously	extends	f	from	(a,	b]	to	[a,	b].	2	2	2	(2k	−	1)	k	(2k)	6	24	8	−	6.3.10.	,	VM	covers	A	∪	B.	f	(a	+	h)	f	(a)	f	(a)f	(a	+	h)	Dividing	this	by	h	and	taking	the	limit	as	h	→	0,	we	find	that	1/f	is	differentiable	at	a	with	derivative	−f	0	(a)/f	2	(a).	It	follows	that	G(f	)	is	covered	by	the	Rj	’s.	Suppose	φ	is	1–1	on	{1,	2,	.	x	−	1	<	0.	Note	by	(19)
that	¯	¯	¯	f	(x0	)	¯	¯	≤	δ	<	r2	.	√	x2	3.3.1.	a)	By	Theorem	3.24,	e	and	sin	x	are	continuous	on	R.	On	the	other	hand,	if	x	∈	A,	then	εx	∈	B,	so	εx	≤	sup	B,	i.e.,	sup	B/ε	is	an	upper	bound	for	A.	121	Copyright	©	2010	Pearson	Education,	Inc.	8.3.8.	a)	Given	x	∈	V	choose	²	:=	²x	>	0	such	that	B²	(x)	⊆	V	.	P∞	Since	k1	is	least,	sk1	−1	≤	y,	hence	sk1	≤	y	+	bk1	.
In	particular,	E	is	a	Jordan	region	of	volume	zero.	3	13.4.4.	By	Theorem	13.36,	Nψ	=	∆τ	Nφ	◦	τ	.	By	the	Trichotomy	Property,	either	x	>	0,	−x	>	0,	or	x	=	0.	If	xn−1	≥	1	then	1=	2	1	+	xn−1	2xn−1	≤	=	xn	≤	=	xn−1	.	It	follows	from	Definition	9.1i),	given	any	r	>	0,	there	is	an	N	such	that	k	≥	N	implies	kxk	−	ak	<	r.	If	y	=	3x−7	then	x	=	(y	+7)/3.	P	Take
the	limit	this	identity	as	n	→	∞,	Pof	∞	∞	bearing	in	mind	that	sn	is	bounded	and	bn	→	0	as	n	→	∞.	If	k=1	ak	converges	then	sn	→	s	for	some	s	∈	R.	By	definition,	½	2	u	/v	v	6=	0	f	(tu,	tv)	−	f	(0,	0)	u2	v	D(u,v)	f	(0,	0)	=	lim	=	lim	4	2	=	t→0	t→0	u	t	+	v	2	t	0	v	=	0.	Thus	Z	1	Z	2	x2	f	(x	+	1)	dx	=	0	(u2	f	(u)	−	2uf	(u)	+	f	(u))	du	=	9	−	2	·	6	+	5	=	2.	Thus	set	V	=
Bδ	(a)	and	M	=	max{kf	(a)k,	kLk	+	1}.	14.4.4.	a)	Fix	N	∈	N	and	r	∈	(0,	1).	(4m	−	1)!	(4m	+	1)!	32	Copyright	©	2010	Pearson	Education,	Inc.	Then	Ã	(n+1)	(f	g)	!0	n	µ	¶	X	n	(k)	(n−k)	=	((f	g)	)	=	f	g	k	k=0	n	µ	¶	n	µ	¶	X	n	(k+1)	(n−k)	X	n	(k)	(n−k+1)	=	f	g	+	f	g	k	k	k=0	k=0	¶	µ	¶¶	n	µµ	X	n	n	=	f	(n+1)	g	(0)	+	+	f	(k)	g	(n+1−k)	+	f	(0)	g	(n+1)	k−1	k	k=1
n+1	X	µn	+	1¶	=	f	(k)	g	(n+1−k	)	k	(n)	0	k=0	by	Lemma	1.25.	9.6	Applications.	Hence	by	part	b),	there	is	a	point	(x2	,	t2	)	∈	K	where	the	absolute	minimum	of	w	occurs.	Then	L(x)	<	L(y)	and	αL(x)	<	αL(y).	9.6.6.	Since	g	is	continuous,	any	point	of	discontinuity	of	f	is	a	point	of	discontinuity	of	g	◦	f	and	vice	versa.	c)	If	r	∈	Q,	x	∈	R	\	Q	but	q	:=	r	+	x	∈	Q,
then	x	=	q	−	r	∈	Q,	a	contradiction.	b)	Let	(U,	g)	∈	A	be	a	chart	at	x.	Therefore,	{xn	}	is	Cauchy,	so	converges	to	some	c	∈	R.	b)	The	closure	is	[0,	1],	the	interior	is	E,	the	boundary	is	{1/n	:	n	∈	N}	∪	{0}.	Therefore,	(φ,	I)	is	a	smooth	curve.	These	efforts	include	the	development,	research,	and	testing	of	the	theories	and	programs	to	determine	their
effectiveness.	Hence,	the	second	case	cannot	hold.	Since	P	2	n−1	|ec	xn	/n!|	≤	3/n!,	it	follows	that	|ex	−	k=0	x2k	/k!|	≤	3/n!	for	all	x	∈	[−1,	1].	Note	f	(−1,	0)	=	−1.	Set	f	(x,	y)	=	φ3	(g(x,	y)).	√	6.6.5.	If	p	>	1	is	infinite,	let	q	=	2.	Conversely,	if	E	0	6=	∅	then	since	E	0	is	open	it	must	contain	a	ball,	hence	a	rectangle	R.	By	part	a),	∂E	⊆	E.	5.3.7.	a)	Since	1/t
is	continuous	on	(0,	∞),	it	follows	from	the	Fundamental	Theorem	of	Calculus	that	L(x)	is	differentiable	at	each	point	x	∈	(0,	∞)	with	L0	(x)	=	1/x.	Since	Ac	is	open,	it	follows	that	E	\	C	is	relatively	open	in	E.	k→∞	k=2	d)	Since	2	sin(a	−	b)	cos(a	+	b)	=	sin(2a)	−	sin(2b),	we	have	∞	X	∞	2	sin(	k=1	X	1	1	1	1	2	2	−	)	cos(	−	)=	(sin	−	sin	)	=	sin	2	−	0	=	sin	2.
Let	x	∈	f	−1	(I).	b)	Ωf	(t	−	h,	t	+	h)	=	0	for	t	6=	0	when	h	is	small,	and	=	1	when	t	=	0.	This	verifies	the	claim.	Hence,	kxk	≤	M	for	all	x	∈	K	:=	E.	6.3.8.	a)	The	middle	inequality	is	obvious	since	the	infimum	of	a	set	is	always	less	than	or	equal	to	its	supremum.	Since	|x||x2	−	y	2	|	|f	(x,	y)|	=	≤	|x|,	x2	+	y	2	it	follows	from	the	Squeeze	Theorem	that	f	is
continuous	at	(0,	0)	with	f	(0,	0)	=	0.	k	log	(k	+	1)	k	logp	k	p	k=2	k=2	But	by	the	Integral	Test,	this	last	series	converges	when	p	>	1.	Since	any	cluster	point	of	A	is	a	cluster	point	of	E,	A	has	no	cluster	points.	However,	bk	does	not	converge	as	k	→	∞.	Then	f	(n+1)	(x)	=	PN	k=n+2	(−kak	/x	f	k+1	(n+1)	2	)e−1/x	+	PN	1	(0)	:=	lim	x→0	x	k+3	−1/x2	)e	.
3.4.4.	a)	Given	²	>	0	choose	N	so	large	that	x	≥	N	implies	|f	(x)	−	L|	<	²/3.	b)	If	C	is	relatively	closed	in	E	then	C	=	E	∩	A	for	some	closed	set	A.	Vol	(E)	+	1	Since	we	can	choose	G	so	that	V	(E,	G)	<	Vol	(E)	+	1,	it	follows	that	I1	is	small,	hence	f	is	integrable.	13.1.8.	By	hypothesis,	there	exist	closed,	nonoverlapping	intervals	J1	,	.	Hence	sin	x/xp	is
improperly	integrable	on	[1,	∞)	for	all	p	>	0.	b)	Differentiating	term	by	term,	Bn0	(x)	=	∞	X	(−1)k	(n	+	2k)	³	x	´n+2k−1	k=0	and	Bn00	(x)	=	2k!(n	+	k)!	2	∞	X	(−1)k	(n	+	2k)(n	+	2k	−	1)	³	x	´n+2k−2	k=0	4k!(n	+	k)!	2	.	Thus	given	²	>	0	there	is	a	δ	>	0	such	that	ρ(x,	y)	<	δ	and	x,	y	∈	E	imply	τ	(f	(x),	f	(y))	<	².	G	G	Rj	∩E6=∅	Rj	∩E6=∅	12.1.8.	a)	If	E	is	of
volume	zero,	then	by	definition	there	is	a	finite	collection	of	rectangles	{Rj	:	j	=	1,	.	r1	≤`≤r2	Continuing	this	process,	we	generate	integers	k1	<	r1	<	k2	<	r2	<	.	t→∞	t→∞	b)	Fix	h	>	0	and	let	y	=	ah	−	1.	Conversely,	if	X	is	not	connected	then	there	exist	nonempty	open	sets	U	and	V	such	that	U	∩	V	=	∅	and	X	=	U	∪	V	.	Hence	0	e−xy	dx	converges
uniformly	on	[a,	b].	b)	If	E	is	closed	in	Y	then	Y	\	E	is	open	in	Y	,	so	by	part	a),	Y	\	E	=	U	∩	Y	for	some	U	open	in	X.	c)	By	part	b)	and	Theorem	11.8,	L{f	}	exists	and	is	continuous	on	(a,	∞).	Applying	this	inequality	to	x	=	1/(2N	)	we	obtain	2	=	1/(N	·	(1/(2N	))	≤	1,	a	contradiction.	Similarly,	a−	=	0	if	a	≥	0	and	a−	=	−a	if	a	<	0.	a)	Let	C1	be	the	“outside”
curve.	0	b)	Let	H	be	the	solid	hyperboloid	whose	boundary	is	S,	let	A	be	the	upper	semidisk	{(x,	z)	:	z	≥	0,	x2	+z	2	≤	1},	and	B	be	the	upper	semiannulus	{(x,	z)	:	z	≥	0,	1	≤	x2	+	z	2	≤	2}.	Therefore,	x	=	0,	1.	But	this	cannot	be,	since	the	later	converges	to	∞	as	k	→	∞.	15.3.4.	By	Stokes’s	Theorem,	the	Product	Rule,	the	Poincar´e	Lemma,	and	the
substitution	dη	=	ω	we	have	Z	Z	Z	Z	Z	ηω	=	d(ηω)	=	dη	·	ω	+	(−1)r	ηdω	=	dη	·	ω	=	ω2	.	Fix	h	with	norm	so	small	that	f	(a	+	h)	is	defined,	and	observe	by	the	distributive	law	that	f	(a	+	h)	×	g(a	+	h)	−	f	(a)	×	g(a)	−	T	(h)	=	f	(a	+	h)	×	(g(a	+	h)	−	g(a))	+	(f	(a	+	h)	−	f	(a))	×	g(a)	−	f	(a)	×	Dg(a)(h)	−	Df	(a)(h)	×	g(a)	=	f	(a	+	h)	×	(g(a	+	h)	−	g(a)	−	Dg(a)
(h))	+	(f	(a	+	h)	−	f	(a))	×	Dg(a)(h)	(f	(a	+	h)	−	f	(a)	−	Df	(a)(h))	×	g(a)	=:	I1	+	I2	+	I3	.	In	particular,	y	k2	is	least	such	that	sr2	<	x,	then	x	+	inf	b`	≤	`≥r1	sup	s`	<	x.	By	the	Extreme	Value	Theorem,	f	has	an	absolute	minimum	on	[−N,	N	],	say	f	(xm	)	=	m.	Since	f	is	a	finite	sum	of	C	∞	functions,	it	is	C	∞	on	R.	13.2.1.	a)	Let	(x,	y,	z)	=	φ(t).	If	λ	6=	0,
then	y√=	−2x	√	and	constraint	implies	x	=	±1/	5.	Hence,	by	our	opening	observation,	f	(2k−1)	(0)	=	0	for	all	k	∈	N.	P9	b)	Notice	that	3/n!	<	10−5	holds	when	n	≥	9.	xjnn	→	f1j1	(a)	.	Hence	f	is	analytic	on	every	bounded	72	Copyright	©	2010	Pearson	Education,	Inc.	Also,	f	(x)	=	f	(mx/m)	=	f	(x/m)	m	implies	f	(x/m)	=	f	(x)	for	m	∈	N.	Hence	by	the
Sequential	Characterization	of	Limits,	h(x)	→	L	as	x	→	a.	Since	f	is	bounded	and	{fn	}	is	uniformly	bounded,	there	is	an	M	>	0	such	that	max{|fn	(x)	−	f	(x)|	:	x	∈	[a,	b],	n	∈	N}	≤	M	.	Therefore,	lim	supn→∞	xn	=	lim	inf	n→∞	xn	=	0	by	Theorem	2.36.	There	is	an	N	∈	N	such	that	n,	m	≥	N	implies	|xn	−	xm	|	and	|yn	−	ym	|	are	both	<	ε/(2M	).	b)	This	is	the
set	of	points	on	the	circle	(x	−	1)2	+	y	2	=	1	or	on	the	x	axis	between	x	=	2	and	x	=	3.	Since	sin(1/yk2	)	=	(−1)k	,	we	have	Var	(φ)	≥	n	2X	−1	|φ(xk	)	−	φ(xk−1	)|	=	k=1	n	2X	−1	n	|x2k	+	x2k−1	|	=	k=1	2	−1	2	X	4k	.	It	is	easy	to	see	that	1	=	(1	−	r)2	∞	X	(k	+	1)rk	.	b)	f	−1	(−1,	1)	=	[0,	1)	is	relatively	open	in	[0,	∞),	the	domain	of	f	as	Theorem	10.58	says
it	should;	f	−1	[−1,	1]	=	[0,	1]	is	relatively	closed	in	[0,	∞)	as	Exercise	10.6.4	says	it	should.	0	b)	If	φ(t)	=	(a	cos	t,	b	sin	t)	and	I	=	[0,	π/2],	then	kφ0	(t)k	=	k(−a	sin	t,	b	cos	t)k	=	p	a2	+	(b2	−	a2	)	cos2	t,	135	Copyright	©	2010	Pearson	Education,	Inc.	It	follows	that	f	(x)	∈	{f	(x1	),	.	Since	u	is	zero	on	∂E,	we	conclude	that	u	is	zero	on	E.	If	a	<	b	then	ac	<
bc	by	the	Multiplicative	Property.	9.1.3.	a)	By	the	Cauchy-Schwarz	inequality	and	the	Squeeze	Theorem,	kxk	·	yk	k	≤	kxk	k	kyk	k	≤	M	kxk	k	→	0	as	k	→	∞.	Thus	ωf	(t)	=	0	if	t	6=	0	and	ωf	(0)	=	1.	Choose	k	∈	N	such	that	k	≤	β	<	k	+	1	and	let	x	∈	(0,	1).	A	similar	argument	proves	that	the	left	derivative	of	f	at	x	is	even.	Since	f√(−2)	=√−8,	it	follows	that	√
f	(E)	=	[−8,	1].	Then	there	are	numbers	x1	<	x2	<	x3	in	[a,	b]	such	that	f	0	(x0	)	<	f	0	(x3	)	<	f	0	(x2	).	Since	D	=	sin	x	cos	y,	f	((2k	+	1)π/2,	jπ)	=	2	is	a	local	maximum	if	k	and	j	are	even,	f	((2k	+	1)π/2,	jπ)	=	−2	is	a	local	minimum	if	k	and	j	are	odd,	and	((2k	+	1)π/2,	jπ)	is	a	saddle	point	if	k	+	j	is	odd.	Since	a	∈	E	and	E	is	bounded	above	by	b,	x0	:=	sup	E
is	a	finite	real	number.	Since	E	∩	(a	−	r,	a	+	r)	contains	infinitely	many	points,	so	does	E	∩	(a	−	r,	a	+	r)	\	{a}.	,	|xk	−	a|},	then	by	hypothesis	there	is	an	xk+1	∈	E	∩	(a	−	s,	a	+	s).	1.5.6.	a)	Let	C	=	[0,	1]	and	B	=	[−1,	0].	By	Theorem	3.39,	there	is	a	continuous	function	g	on	[a,	b]	such	that	f	(x)	=	g(x)	for	all	x	∈	I.	Then	a	<	b	and	c	<	d	but	ac	=	−4	is	not
less	than	bd	=	−5,	a2	=	4	is	not	less	than	b2	=	1,	and	1/a	=	−1/2	is	not	less	than	1/b	=	−1.	c)	Suppose	x	∈	∂(A	∩	B).	Indeed,	the	set	E	:=	B1	(0,	0)	∪	B1	(1,	0)	is	connected	but	not	convex.	2	k	k=1	By	Theorem	14.29,	SF	converges	to	F	uniformly	on	R,	in	particular,	at	x	=	0.	2	−a	a	√	√	2	implies	(x	−	1)2	+	y	2	=	1.	Clearly,	it	takes	{1,	2,	.	Since	sin3	θ	=
sin	θ(1	−	cos2	θ),	it	follows	that	Z	π/3	Z	1/2	sin3	θf	(cos	θ)	dθ	=	−	0	(1	−	u2	)f	(u)	du	=	3	−	7	=	−4.	dy	d(x,	z)	=	3	E	D	5−4x−2z	D	Using	the	change	of	variables	x	=	2	+	r	cos	θ,	z	=	1	+	r	sin	θ,	dx	dy	=	r	dr	dθ,	we	conclude	ZZ	Z	2π	Z	ω=3	S	0	2	(4	−	r2	)r	dr	dθ	=	24π.	In	particular,	if	n	>	N	,	then	√	k	sup	k>n	ak	≤	(aN	r0−N	)1/k	·	r0	.	3.3.11.	Since	f	0	(x)
=	−(x	logp	x)−2	(p	logp−1	x	+	logp	x)	≤	0	55	Copyright	©	2010	Pearson	Education,	Inc.	However,	0	<	y	<	x	is	satisfied	by	the	other	pair	because	s	>	2	t	>	0.	Therefore,	lim	supn→∞	xn	=	lim	inf	n→∞	xn	=	∞	by	Theorem	2.36.	5.4.8.	Let	b	∈	[1,	∞)	and	n	>	1.	Thus	f	(2,	2,	4)	=	48	is	the	minimum.	Taking	the	limit	of	these	inequalities	as	p	→	1+	we	see
that	this	inequality	holds	for	p	=	1	too.	By	induction,	there	exist	infinitely	many	points	in	E	∩	Br	(a).	Hence	by	assumptions	iii)	and	vi),	0	≤	1	−	cos	x	≤	1	−	cos2	x	=	sin2	x	≤	x2	,	i.e.,	0	≤	(1	−	cos	x)/x	≤	x	→	0	as	x	→	0+.	Since	f	=	0	Q(x,	v)	dv	+	h(x),	we	have	by	differentiating	under	the	integral	sign	that	Z	y	Z	y	fx	=	Qx	(x,	v)	dv	+	h0	(x)	=	Pv	(x,	v)	dv	+
h0	(x).	6.2.7	Since	bk	→	0,	it	surely	is	bounded.	Thus	θ(t)/`(t)	=	1/r	for	all	t.	b)	If	f	:	M	→	Rk	is	C	p	and	G	:	Rk	→	R`	is	C	p	,	then	so	is	(G	◦	f	)	◦	h−1	=	G	◦	(f	◦	h−1	)	for	every	chart	(h,	V	)	of	M	.	c)	By	the	Quotient	and	Chain	Rules,	g	0	(x)	=	f	(x3	)	·	1	−	x	·	3x2	f	0	(x3	)	,	f	2	(x3	)	√	so	g	0	(	3	2)	=	(f	(2)	−	6f	0	(2))/f	2	(2)	=	(1	−	3π)/2.	Suppose	t	>	t0	is	near	t0
and	x0	=	ψ(t0	).	Since	Q(x)/xm	→	bm	,	we	conclude	that	P	(x)/Q(x)	→	0	as	x	→	±∞.	x2	+	y	2	=	r2	is	such	a	curve	for	r	sufficiently	small.	Fix	n	≥	2.	If	x	=	1	then	f	(y)	=	1	+	3y	−	y	3	has	critical	points	y	=	±1,	which	correspond	to	extreme	points	of	H.	S	E	But	on	E,	n	=	(0,	0,	1),	and	the	third	component	of	∇	×	F	is	∂	∂	(y	cos	z	3	)	−	(x	sin	z	3	)	=	0.	Thus	by
Green’s	Theorem	and	Theorem	11.2,	Z	ZZ	F	·	T	ds	=	(fyx	−	fxy	)	dA	=	0.	Since	g(U	)	is	an	open	set	containing	h(x),	we	can	choose	a	δ	>	0	such	that	Bδ	(h(x))	⊂	g(U	).	By	l’Hˆopital’s	Rule,	x	log(1/x)	→	0	as	x	→	0+,	so	use	Theorem	3.40.	14.3.1.	Since	sin(k	+	α)x	=	sin	kx	cos	αx	+	cos	kx	sin	αx,	we	have	Z	π	f	(x)	sin(k	+	α)x	dx	=	πbk	(f	(x)	cos	αx)	+	πak	(f
(x)	sin	αx)	−π	for	all	k	∈	N.	,	|bn	|)	≤	k=0	n	X	k=0	!1/2	Ã	2	|ak	|	n	X	!1/2	2	|bk	|	k=0	for	all	n	∈	N.	Therefore,	n+1	n	√	x	=	2,	−1.	By	the	Mean	Value	Theorem,	there	is	a	c	between	x1	and	x2	such	that	f	(x2	)	−	f	(x1	)	=	f	0	(c)(x2	−	x1	).	−π/2	13.5.7.	By	Exercise	12.2.3	and	Gauss’	Theorem,	ZZ	ZZZ	1	1	lim	F	·	n	dσ	=	lim	div	F	dV	r→0	Vol	(Br	(x0	))	r→0	Vol
(Br	(x0	))	∂Br	(x0	)	Br	(x0	)	=	div	F	(x0	).	b)	By	a)	and	induction,	|xn+1	−	xn	|	=	|F	(xn	)	−	F	(xn−1	)|	≤	r|xn	−	xn−1	|	≤	rn	|x1	−	x0	|.	66	Copyright	©	2010	Pearson	Education,	Inc.	106	Copyright	©	2010	Pearson	Education,	Inc.	Repeating	the	argument	in	Case	1,	we	conclude	that	xn	→	1	as	n	→	∞.	Let	²	>	0	P2k	and	choose	N	so	large	that	|	j=k+1	aj	|	<	²
for	k	≥	N	.	,	f	(xN	)}	for	all	x	∈	X.	By	(7),	0	≤	a2	<	b2	.	b)	Since	limy→0	limx→0	f	(x,	p	y)	=	1/2	and	limx→0	limy→0	f	(x,	y)	=	1,	this	function	has	no	limit	as	(x,	y)	→	(0,	0).	Let	M	:=	sup{|x|k	:	x	∈	[a,	b],	k	=	0,	1,	.	d)	Since	f	(0,	1)	=	(−1,	0)	and	·	Df	(u,	v)	=	¸	3u2	−2v	,	cos	u	−1/v	we	have	∆f	(0,	1)	=	2	6=	0,	and	it	follows	from	the	Inverse	Function	Theorem
that	·	D(f	−1	)(−1,	0)	=	(Df	(0,	1))−1	=	−1/2	−1/2	¸	1	.	By	the	Extreme	Value	Theorem,	g(x)	≥	²0	>	0	for	x	∈	[a,	b].	(These	xk	’s	have	been	chosen	so	that	φ	achieves	its	maximum	variation.)	Since	sin(1/xk	)	=	(−1)k	,	parts	a)	and	b)	imply	that	n	n	n	X	X	4	X	8k	2	+	2	8	|φ(xk	)	−	φ(xk−1	)|	=	|x2k	+	x2k−1	|	=	2	≤	2	0	for	all	x	∈	R,	ex	is	convex	on	R.	x	5.3.9.
Using	the	substitution	y	=	f	(x)	and	integrating	by	parts,	we	have	Z	Z	f	(b)	f	f	(a)	Therefore,	Rb	a	f	(x)	dx	+	R	f	(b)	f	(a)	−1	(y)	dy	=	a	b	¯b	xf	(x)	dx	=	xf	(x)	¯a	−	Z	0	b	f	(x)	dx.	Thus	Df	(0,	0)	=	(0,	0).	If	a	=	−3,	b	=	1,	and	n	=	2,	then	(a	+	b)n	=	4	is	not	less	than	or	equal	to	bn	=	1.	Therefore,	the	limit	exists	and	is	0.	0	p	√	√	√	c)	Let	x	∈	[0,	3].	Since	f	(x)	cos
αx	and	f	(x)	sin	αx	are	integrable	on	[−π,	π],	it	follows	from	the	Riemann-Lebesgue	Lemma	that	the	integral	converges	to	zero	as	k	→	∞.	Therefore,	f	is	uniformly	continuous	on	(0,	1)	by	Theorem	3.39.	Therefore,	Sf	converges	absolutely	and	uniformly	by	the	Weierstrass	M-Test.	It	must	also	be	bounded.	P∞	Finally,	the	derived	series	k=1	cos(x/(k	+
1))/(k(k	+	1))	converges	uniformly	on	R	by	the	Weierstrass	M–Test.	Hence,	by	the	point-normal	form,	d	·	(x	−	a)	=	0	is	an	equation	of	the	plane	through	a,	b,	c.	Then	there	is	a	kj+1	>	N	>	kj	such	that	xkj+1	>	r.	By	hypothesis,	this	means	L	−	ε	<	f	(x)	≤	g(x)	≤	h(x)	<	L	+	ε.	R1	√	11.1.8.	a)	Since	|	cos(x2	+	y	2	)|	≤	1	for	any	y	∈	(−∞,	∞)	and	0	dx/	x	<	∞,	it
follows	from	the	Weierstrass-M	R1	√	Test	that	0	cos(x2	+	y	2	)/	x	dx	converges	uniformly	on	(−∞,	∞).	d)	This	is	the	set	of	points	between	the	two	branches	of	the	hyperbola	x2	−	y	2	=	1	which	lie	above	the	line	2	y	=	−1	and	below	−	y	2	≤	1,	−1	≤	y	≤	1}	and	∂E	=	{x2	−	y	2	=	1,	−1	≤	y	≤	√	the	line	√	y	=	1.	d)	By	vector	algebra	and	Cauchy-Schwarz,	|	kx
−	yk2	−	x	·	x|	=	|	−	2x	·	y	+	y	·	y|	=	|(−2x	+	y)	·	y|	≤	2	·	1	=	2.	Since	the	1/bk	’s	are	decreasing,	we	have	by	telescoping	that	¯	∞	¯	¯	¯	µ	¶	µ	¶	¯X	¯	¯1	1	¯¯	1	1	²	¯	¯	ak	¯	≤	2	sup	|ck	|	¯¯	−	≤	2	sup	|c	|	−	0	≤	2	sup	|c	|	<	.	d)	Let	L	=	∞	and	suppose	without	loss	of	generality	that	M	>	0.	This	contradicts	the	fact	that	e−N	y	→	1	as	y	→	0.	Suppose	f	is	integrable
on	[a,	b],	g	is	integrable	on	[c,	d],	h(x,	y)	:=	f	(x)g(y),	and	R	:=	[a,	b]	×	[c,	d].	Let	Q	be	the	product	√	of	intervals	[aj	,	bj	],	where	bj	−	aj	=	s	for	all	j.	e)	Use	the	trivial	parameterization	φ(t)	=	(t,	f	(t),	0)	and	apply	part	d).	The	rest	of	these	identities	follow	in	a	similar	way	from	corresponding	properties	of	real	numbers.	Therefore,	¯Z	¯	Z	Z	bn	Z	1	¯	1	¯	bn	¯
¯	f	(x)	dx	−	fn	(x)	dx¯	≤	|f	(x)	−	fn	(x)|	dx	+	|f	(x)|	dx	¯	¯	0	¯	0	0	bn	²	²	²	≤	bn	+	M	(1	−	bn	)	≤	+	=	².	e)	Given	any	partition	P	of	[a,	b],	S(f	;	P)	−	s(f	;	P)	is	the	area	of	a	collection	of	rectangles	which	covers	G(f	).	Finally,	2	π	a0	(x2	)	=	Z	π	x2	dx	=	0	2π	2	.	In	2	2	particular,	y	=	(s	±	s	−	4t)/2	and	x	=	(s	∓	s	−	4t)/2.	Hence,	for	²	sufficiently	small	and	j	large,
Vol	(φ(Qj	))	e²	|∆φ	(x)|	>	|∆φ	(x)|	−	η.	k=p+1	Now	(2p)!/(2k)!	∈	N	for	each	0	≤	k	≤	p,	so	the	left	side	of	(*)	is	an	integer.	A	similar	argument	shows	that	L(x)	→	−∞	as	x	→	0+.	It	follows	that	sup	B	≤	ε	sup	A.	Thus	choose	N0	such	that	εN0	<	ε/2.	Thus	(σ	◦	h)	◦	g	−1	=	σ	◦	(h	◦	g	−1	)	and	g	◦	(σ	◦	h)−1	=	(g	◦	h−1	)	◦	σ	−1	are	C	p	when	h	◦	g	−1	and	g	◦	h−1
are,	and	the	Jacobians	∆(σ◦h)◦g−1	=	∆σ	∆h◦g−1	and	∆g◦(σ◦h)−1	=	∆g◦h−1	∆σ−1	are	positive	when	A	is	oriented.	Using	Lagrange’s	integral	form	of	the	remainder	term	for	the	one-dimensional	Taylor’s	Formula,	we	obtain	f	(x)	−	f	(a)	=	F	(1)	−	F	(0)	=	Z	1	p−1	X	1	(j)	1	F	(0)	+	(1	−	t)p−1	F	(p)	(t)	dt.	Case	3.	88	Copyright	©	2010	Pearson	Education,
Inc.	11.5.6.	a)	By	the	Chain	Rule,	g	0	(t)	=	fx	(tx	+	(1	−	t)a,	y)(x	−	a)	+	fy	(a,	ty	+	(1	−	t)b)(y	−	b).	Then	f	and	g	are	uniformly	continuous	on	(0,	1),	but	(f	/g)(x)	=	1/x	is	not	uniformly	continuous	on	(0,	1).	Thus	here,	f	−1	(x)	=	arcsin(π	−	x).	By	Theorem	9.8,	xk	→	a	and	xk	∈	C	⊆	B	implies	a	∈	B.	In	particular,	f	(x0	)	=	0,	a	contradiction.	Thus	E	is
uncountable.	If	q	>	1	then	the	geometric	series	PIf	P	∞	∞	k	−1	≤	k=1	1/q	k	<	∞.	If	it	holds	for	n	then	n+1	X	k=	k=1	n(n	+	1)	n	(n	+	1)(n	+	2)	+	n	+	1	=	(n	+	1)(	+	1)	=	.	Since	p	>	1,	it	follows	from	the	Comparison	Test	that	k=1	|ak	|	converges,	a	contradiction.	Hence	it	follows	from	Theorem	11.9	that	d	dy	Z	∞	π	e−xy	sin	x	dx	=	−	x	Z	∞	e−x	sin	x	dx	π
at	y	=	1.	Therefore,	the	original	series	diverges.	n!	(n	+	1)!	Since	x	>	0	implies	xn+1	>	0	and	ec	>	1,	it	follows	that	ex	>	1	+	x	+	·	·	·	+	xn	.	But	E	⊂	∪α∈A	Vα	,	hence	by	Lindel¨of’s	Theorem,	E	⊂	∪α∈A0	Vα	for	some	countable	subset	A0	of	A.	14.2.4.	a)	If	(Sf	)(x0	)	converges	to	M	,	then	by	Remark	14.6,	(σN	f	)(x0	)	→	M	as	N	→	∞,	i.e.,	M	=	L.	d)	Since	an
easy	induction	proves	that	9n	>	n	for	all	n	∈	N,	we	have	9−n	<	1/n.	11.4.5.	By	the	Chain	Rule,	ur	=	fx	cos	θ	+	fy	sin	θ,	vr	=	gx	cos	θ	+	gy	sin	θ,	uθ	=	−fx	r	sin	θ	+	fy	r	cos	θ,	and	vθ	=	−gx	r	sin	θ	+	gy	r	cos	θ.	Then	f	−1	(xn	)	→	f	−1	(x0	)	by	Theorem	4.32.	Therefore,	x	>	M	implies	|g(x)	−	L|	<	ε.	In	particular,	K	is	closed	and	bounded,	hence	compact	by
the	Heine-Borel	Theorem.	Since	E	is	convex,	x0	∈	L(x;	y)	⊆	E.	k=1	j=1	Taking	the	limit	of	this	inequality	as	N	→	∞	we	obtain	the	desired	inequality.	If	f	(c)	>	0,	then	c	−	a	>	0	and	c	−	b	<	0	imply	that	f	0	(x1	)	>	0	>	f	0	(x2	).	2.2	Limit	Theorems.	P∞	6.1.0.	a)	False.	Since	10n+1	y	<	10,	E	⊆	{0,	1,	.	Set	x1	=	c,	x2	=	f	−1	(c),	and	apply	the	Inverse	Function
Theorem.	We	want	to	solve	for	u,	v,	w,	so	we	must	compute	æ	4	ö	5u	2xv	1	∂(F1	,	F2	,	F3	)	=	det	è	2uy	5v	4	1	ø	=	4w3	(25u4	v	4	−	4uvxy).	By	parts,	Z	1	0	¯1	ex	f	0	(x)	dx	=	ex	f	(x)	¯0	−	Z	1	Z	ex	f	(x)	dx	=	−	0	1	ex	f	(x)	dx.	Hence	the	Squeeze	Theorem	implies	that	9−n	→	0	as	n	→	∞.	By	definition,	cn	−	bn	=	cn−1	−	bn−1	=	1,	so	by	induction,	this	difference
is	always	1.	Since	B1/2	(a)	contains	xk	for	infinitely	many	k’s,	choose	k2	>	k1	such	that	xk2	∈	B1/2	(a).	7	Copyright	©	2010	Pearson	Education,	Inc.	Let	a	∈	∂E	and	let	xn	∈	E	with	xn	→	a	as	n	→	∞.	10.2.7.	Modify	the	proofs	of	Theorem	3.24,	replacing	the	absolute	value	signs	with	the	metric	ρ.	n→∞	n→∞	4.3.10.	Hence	by	Theorem	11.22,	a	normal	to	the
tangent	plane	at	(a,	b,	c)	is	e	=	(Fx	(a,	b,	c)/Fz	(a,	b,	c),	Fy	(a,	b,	c)/Fz	(a,	b,	c),	1).	In	particular,	f	(q)	=	f	(q	·	1)	=	f	q	(1)	for	all	q	∈	Q.	Hence,	Mj	(f	−	fN	)	and	mj	(f	−	fN	)	are	both	less	than	ε,	and	it	follows	that	I1	≤	2	ε	2Vol	(E)	+	2	X	|Rj	|	≤	Rj	∩E6=∅	ε	V	(E,	G).	By	Corollary	5.23	and	the	Fundamental	Theorem	of	Calculus,	it	suffices	to	prove	that	f	−1
and	f	1/m	are	integrable	for	all	m	∈	N.	Hence	by	Theorem	9.15	(the	limit	of	the	sum	is	the	sum	of	the	limits),	P	(x)	→	P	(a)	as	x	→	a.	14.2.7.	a)	Suppose	P	(x)	≡	an	xn	+	·	·	·	+	a1	x	+	a0	is	a	polynomial	on	R	and	ε	>	0.	It	might	be	better	to	change	the	surface.	Finally,	if	E	is	closed	and	bounded	then	(by	the	Heine-Borel	Theorem)	E	is	compact.	Hence	by	the
Archimedean	Principle,	there	is	an	n	∈	N	such	that	2n	>	1/(b	−	a).	If	x	>	M	,	then	|f	(x)	−	L|	≤	1/x2	<	1/M	2	=	ε.	2k	+	3	2	d)	It	converges	by	the	Ratio	Test,	since	|ak+1	|	2k	+	1	=	→0	|ak	|	(2k	+	1)(2k	+	2)	ask	→	∞.	Clearly,	a0	(f	)	=	√	Z	√	√	π	2	π	cos	2x	dx	=	2	sin	2π.	It’s	a	little	easier	to	resort	to	the	²-δ	definition	of	continuity.)	Define	g(x)	:=	f	(x)	when	x
∈	D	and	g(x)	as	above	when	x	∈	X	\	D.	Thus	by	the	Heine-Borel	Theorem,	E	is	compact.	Therefore,	sn	is	Cauchy	by	hypothesis.	Let	²	>	0	and	use	the	Approximation	Property	to	choose	N	∈	N	such	that	supk≥N	xk	<	s	+	².	134	Copyright	©	2010	Pearson	Education,	Inc.	d)	The	absolute	value	of	the	ratio	of	successive	terms	of	this	series	is	given	by	√	√	k	k
+	1|x	+	2|/((k	+	1)	k	+	2).	By	induction,	then,	there	exist	infinitely	many	points	xnk	in	Br	(a)	∩	E.	Therefore,	|f	(x)	−	f	(xj	)|	<	²/(2(b	−	a)),	i.e.,	(x,	y)	∈	Rj	.	Thus	Ex	is	bounded	above	by	aq0	.	a	Rb	Rb	b)	Suppose	a	|f	(x)|	dx	=	0.	It	follows	that	θ(t)/`(t)	=	0	for	all	t,	i.e.,	κ(x0	)	=	0	for	all	x0	on	the	given	line.	It	is	open	but	not	connected	since	it	is	the	union	of
the	open	upper	half	plane	and	the	open	lower	half	plane.	Then	(f	∨	g)(x)	=	f	(x)	and	|f	(x)	−	g(x)|	=	f	(x)	−	g(x)	so	f	(x)	+	g(x)	+	|f	(x)	+	g(x)|	2f	(x)	=	=	f	(x)	=	(f	∨	g)(x).	9.3.7.	By	the	Mean	Value	Theorem,	g(x)	=	g(x)	−	g(1)	=	g	0	(c)(x	−	1)	for	some	c	between	x	and	1.	b)	If	E	is	infinite,	then	it	contains	a	sequence	xk	of	distinct	points.	Since	a	∈	E,	it
follows	that	a	∈	C.	4.2.3	(xα	)0	=	(eα	log	x	)0	=	αeα	log	x	/x	=	αxα−1	for	all	x	>	0.	Then	by	the	Second	Multiplicative	Property,	4x2	>	4x2	−	1,	i.e.,	0	>	−1.	27	√	c)	Because	these	surfaces	intersect	at	z	=	3/	2,	a	parameterization	of	this	“spanish	olive	half”	is	given	by	(ψ,	B)	where	ψ(u,	v)	=	(3	cos	u	cos	v,	3	sin	u	cos	v,	3	sin	v)	√	and	B	=	[0,	2π]	×	[π/4,
π/2].	a	¯b	f	−1	(x)	dx	=	xf	(x)	¯a	=	bf	(b)	−	af	(a).	∂E	E	13.4.6.	The	tetrahedron	T	has	three	faces,	T1	in	x	=	0,	T2	in	y	=	0,	and	T3	in	z	=	0.	Therefore,	µ	¶n	¯	³	x	´n	¯¯	b	¯	x	b	→0	¯e	−	1	+	¯≤e	−	1+	n	n	as	n	→	∞.	The	function	f	(x)	=	x	for	x	∈	N	and	f	(x)	=	1	for	x	∈	R	\	N	takes	R	onto	N,	but	R	is	not	at	most	countable.	By	Gauss’	Theorem,	ZZ	ZZZ	Z	F	·	n	dσ
=	2	S	2π	Z	1	Z	1	(x	+	y	+	z)	dV	=	2	E	Z	1Z	=	0	+	0	+	4π	(r	cos	θ	+	r	sin	θ	+	z)r	dz	dr	dθ	0	0	0	1	rz	dz	dr	=	π.	hence	P∞	k=1	1/(2k	−	1)2	=	(π/2)(π/4)	=	π	2	/8.	Choose	by	Archimedes	an	N	∈	N	such	that	N	>	M/ε.	4.1.2.	a)	Let	n	∈	N.	Then	Ac	is	open	in	Rm	,	so	by	Theorem	9.26,	A0	:=	−1	f	(Ac	)	∩	E	is	relatively	open	in	E.	2	a	holds.	(Such	points	exist	since
this	intersection	contains	infinitely	many	points,	hence	at	least	one	different	from	a.)	Since	ρ(xn	,	a)	<	1/n,	it	follows	from	the	Squeeze	Theorem	that	xn	→	a	as	n	→	∞.	Compactness	is	not	needed	to	prove	f	+	g	is	uniformly	continuous.	By	Abel’s	Transform,	N	X	ak	rk	=	SN	rN	+	(1	−	r)	N	−1	X	k=0	Sk	rk	.	Then	kf	(x)k	<	kLk	+	1	for	all	x	∈	Bδ	(a)	\	{a}.	a)
If	α	=	0,	then	αxn	=	0	for	all	n	∈	N,	hence	is	Cauchy.	Hence	by	induction,	xn	is	increasing	and	bounded	√	above	by	0.	c)	If	(a,	b,	c)	∈	H	and	t(1,	1,	−1)	=	(−a,	−b,	c)	then	a	=	b	=	c	=	t	hence	a2	=	a2	+	b2	−	c2	=	1,	i.e.,	a	=	±1.	If	C	:=	supx∈R	|f	(x)|,	then	Z	|∆N	(x)|	≤	²	Z	2π−δ	|φN	(t)|	dt	+	Eδ	|f	(x	−	t)	−	f	(x)|	|φN	(t)|	dt	δ	Z	2π−δ	≤	²M	+	2C	|φN	(t)|	dt,	δ
158	Copyright	©	2010	Pearson	Education,	Inc.	3.1.7.	a)	Since	f	(x)	≤	|f	(x)|	it	is	clear	that	f	+	(x)	≥	0	and	f	−	(x)	≥	0.	By	Theorem	2.36	and	a),	lim	xn	+	lim	inf	yn	≤	lim	inf	(xn	+	yn	).	,	f	(xN	)},	so	f	(K)	is	finite,	say	K	=	{y1	,	.	But	a	finite	set	is	nonempty	connected	if	and	only	if	it	is	a	single	point.	Similarly,	since	(k	+	1)σk	=	S0	+	·	·	·	+	Sk	,	we	can	prove
(1	−	r)	∞	X	Sk	rk	=	(1	−	r)2	k=0	∞	X	(k	+	1)σk	rk	.	ds	dt	ds	kφ	(t)k	kφ	(t)k	In	particular,	kν	0	(s)k	=	1	for	all	s	∈	[0,	L].	Conversely,	suppose	f	−1	(E)	∩	B	is	closed	for	every	closed	E	in	Rm	but	f	is	NOT	continuous	at	some	a	∈	B.	Then	√	¶	µ√	√	√	xn	+	x	√	√	xn	−	x	√	√	.	Since	curl	F	=	(xz,	−yz,	−2xy),	it	follows	from	Stokes’s	Theorem	that	Z	ZZ	F	·	T	ds	=
(−x2	,	xy,	−2xy)	·	(1,	0,	1)	dA	C	B1	(0,0)	2π	Z	1	Z	=−	0	(r3	cos2	θ	+	2r2	sin	θ	cos	θ)	dr	dθ	0	Z	1	=	−π	r3	dr	+	0	=	−π/4.	Define	g(x)	:=	limk→∞	f	(xk	).	9.2.4.	For	each	x	∈	K,	Br(x)	∩	K	=	{x}.	If	x	=	−1	or	x	=	−3,	this	series	is	k=1	(±1)k	/(k	k	+	1)	which	converges	absolutely	by	the	Limit	P∞	Comparison	Test,	since	k=1	k	−3/2	<	∞.	Hence	by	definition,	f
(b−)	exists	and	is	equal	to	L.	d)	By	the	Chain	Rule,	(f	◦	g)0	(2)	=	f	0	(g(2))g	0	(2)	=	bc.	Now	by	l’Hˆ	opital’s	Rule,	u²	log(1/u)	→	0	as	u	→	0	for	any	²	>	0.	E	j=1	In	particular,	the	integral	is	Vol	(E)	if	n	is	odd	and	0	if	n	is	even.	5.2.3.	a)	By	Exercise	4.4.4,	x2	−	x6	/3!	<	sin(x2	)	<	x2	−	x6	/3!	+	x10	/5!.	Then	√	0	<	xn−1	+	1	<	1	so	0	<	xn−1	+	1	<	xn−1	+	1
and	it	follows	that	xn−1	<	xn−1	+	1	−	1	=	xn	.	Thus	(*)	holds	for	all	a,	b	∈	R.	0	2	2	2	Making	the	substitution	u	=	a	+	(b	−	a	)	cos2	t,	du	=	−2(b2	−	a2	)	cos	t	sin	t,	we	have	Z	xy	ds	=	C	−ab	2(b2	−	a2	)	Z	a2	√	u	du	=	b2	ab(a2	+	ab	+	b2	)	.	c)	Suppose	0	<	a√<	1.	Since	φ(0)	=	0,	integration	by	parts	yields	Z	N	Z	N	e−st	f	(t)	dt	=	e−(s−a)N	φ(N	)	+	(s	−	a)
e−(s−a)t	φ(t)	dt.	Then	N	[	A	:=	E	\	Bδ	(xj	)	j=1	is	closed	and	bounded,	hence	compact.	Hence	Vol	(E	0	)	=	Vol	(E)	=	Vol	(E).	This	last	term	converges	to	0	as	(x,	y)	→	(0,	0)	since	α	<	1/2.	By	Theorem	3.40,	it	suffices	to	prove	that	f	is	continuously	extendable	from	the	right	at	x	=	a,	i.e.,	that	if	xn	∈	(a,	b]	and	xn	→	a,	then	f	(xn	)	→	L	for	some	L	∈	R.
Therefore,	κ(x0	)	=	1/r	for	all	x0	on	the	circle	C.	If	it	holds	for	some	n	≥	3	then	2(n	+	1)	+	1	=	2n	+	1	+	2	<	2n	+	2	<	2n	+	2n	=	2n+1	.	0	11.4.11.	By	Dini’s	Theorem,	fk	→	f	uniformly	on	[−M,	M	].	Then	b	−	a,	c	−	b	∈	P	and	it	follows	from	ii)	that	c	−	a	=	b	−	a	+	c	−	b	∈	P,	i.e.,	c	>	a.	4.3.0.	a)	True.	Therefore,	Z	Z	−2	F	·	T	ds	=	√	3	C2	√	√	R	In	particular,
C	F	·	T	ds	=	π/	3	−	π/	3	=	0.	Pn	c)	If	the	plane	is	parallel	to	x1	+	·	·	·	+	xn	=	π,	then	a	normal	is	given	by	n	=	(1,	1,	.	By	the	Approximation	Property,	choose	xn	∈	E	such	that	xn	→	x0	.	Given	(x0	,	t0	)	∈	∂H,	choose	δ	>	0	such	that	u(x,	y)	≥	−²	for	(x,	y)	∈	Bδ	(x0	,	t0	).	Thus	by	b)	and	Geometric	series,	if	m	=	n	+	k	then	|xm	−	xn	|	≤	(rn	+	rn+1	+	·	·	·	+
rn+k−1	)|x1	−	x0	|	≤	rn	|x1	−	x0	|.	Then	σn	≥	k=N	sk	/n	≥	(n	−	N	)M/n.	In	particular,	f	(t)	is	orthogonal	to	f	0	(t).	On	the	other	hand,	choose	p	<	q	in	Q	such	that	x	<	p	<	q	<	y.	c)	By	Exercise	14.2.2,	σ2N	f	is	uniformly	bounded	on	R,	hence	by	part	b),	d)	If	f	is	even,	then	bk	(f	)	=	0	for	k	∈	N.	Since	xn	increases	from	x0	>	−1,	the	limit	is	0.	2	d)	x2	+	2x	−
1	→	−1	as	x	→	0+	and	sin	x	is	positive	as	x	→	0+,	so	ex	+2x−1	/	sin	x	→	e−1	/0+	=	∞	√	√	as	x	→	0+.	,	N	}	such	that	(ψj	,	[(j	−	1)/N,	j/N	])	and	(φj	,	Ij	)	are	orientation	equivalent	with	transition	τj	.	Hence	by	induction,	there	are	distinct	natural	numbers	k1	,	k2	,	.	If	this	integral	converges	uniformly	on	[0,	1]	then	¯	¯	Z	N	¯	¯	1	¯	¯	−xy	ye	dx¯	=	e−N	y	≤	¯1	−
¯	¯	2	0	uniformly	for	y	∈	(0,	1]	for	N	large.	,	xn	}.	h→0	h→0	h	∂y	h	Finally,	if	f	were	differentiable	at	(0,	0),	then	f	(h,	k)	−	f	(0,	0)	−	∇f	(0,	0)	·	(h,	k)	−2hk	2	√	=	lim	.	e)	limx→1	log	x/(sin(πx))	=	limx→1	(1/x)/(π	cos(πx))	=	−1/π.	Since	the	complement	K	=	H	\	U	is	a	finite	intersection	of	closed	sets	disjoint	from	the	boundary	of	H,	K	is	a	compact	subset	of	H
0	and	u(x,	t)	≥	−²	for	(x,	t)	∈	H	\	K.	57	Copyright	©	2010	Pearson	Education,	Inc.	Since	N	is	fixed,	k=1	|bk	−	b|/n	→	0	and	(n	−	N	)/n	→	1	as	n	→	∞.	Since	φ(0)	=	0	and	φ(x)	→	0	as	√	x	→	∞,	it	follows	that	1/e	is	the	maximum	of	φ	on	[0,	∞).	√	e)	Rationalizing	the	numerator,	the	terms	of	this	series	look	like	1/(	k	2p	+	1	+	k	p	).	Evidently,	the	first	case	holds.
c)	By	part	b),	∞	π	4X	1	0=	−	,	2	π	(2k	−	1)2	k=1	160	Copyright	©	2010	Pearson	Education,	Inc.	If	xn	→	x	then	xn	−	x	→	0,	i.e.,	|f	(xn	)	−	f	(x)|	=	|f	(xn	−	x)|	→	0	as	n	→	∞.	Since	S	=	(Dφ(x))−1	,	we	have	det(S)	=	|∆φ	(x)|−1	.	Since	ρ	is	positive	definite,	we	conclude	that	a	=	b.	Thus	·	A=	2	2	¸	e−2	e−1	.	b)	If	A	=	Q	and	B	=	Ac	then	A	∩	B	=	∅	but	A	∩	B	=	R
∩	R	=	R.	P	∞	b)	False.	x	∈	(∂B)c	.	√	p	c)	True.	Apply	Jensen	for	φ(x)	=	ex	.	c)	M	:=	supx∈E	f	(x)	is	finite	by	part	b).	Conversely,	suppose	y	∈	f	(A)	∩	f	(B).	,	m,	i.e.,	∇f	(0)	=	0.	By	Exercise	1.6.5,	φ	takes	{1,	2,	.	It	follows	that	the	lines	do	not	intersect.	Thus	U	(f,	Pn	)	−	L(f,	Pn	)	=	n	n	X	1	X	n2	(x2j	−	x2j−1	)(xj	−	xj−1	)	=	3	(2j	−	1)	=	3	→	0	n	j=1	n	j=1	as	n	→
∞,	so	f	is	integrable	by	Definition	5.9.	Since	U	(f,	Pn	)	=	n	1	X	2	n(n	+	1)(2n	+	1)	1	k	=	→	n3	6n3	3	k=1	37	Copyright	©	2010	Pearson	Education,	Inc.	4.1.1.	a)	(f	(a	+	h)	−	f	(a))/h	=	(2ah	+	h2	+	h)/h	=	2a	+	h	+	1	as	h	→	0.√	√	1	→	2a	+	√	√	√	b)	By	rationalizing	the	numerator,	(f	(a	+	h)	−	f	(a))/h	=	(	a	+	h	−	a)/h	=	1/(	a	+	h	+	a)	→	1/2	a	as	h	→	0.	Thus	¯	¯	¯
xn	x	¯¯	2	2|x|	¯	−	≤	|xn	−	x|	+	2	|yn	−	y|	→	0	¯	yn	y	¯	|y|	|y|	as	n	→	∞	by	Theorem	2.12i	and	ii.	g	g	2	(3)	8	28	Copyright	©	2010	Pearson	Education,	Inc.	Since	xn−1	≥	1	when	x	≥	1,	we	have	Z	b	Z	b	Z	n	1	b	|f	(xn	)|	dx	≤	xn−1	|f	(xn	)|	dx	=	|f	(u)|	du.	4.5.6.	a)	Suppose	that	x1	6=	x2	belong	to	I.	Therefore,	it	follows	from	Stokes’s	Theorem	that	ZZ	Z	ω=	S	0
2π	µ	µ	¶	¶	Z	1/√2	sin	t	cos	t	cos2	t	−	√	cos	√	+	cos	t	dt	=	cos	u	du	+	0	=	0.	Let	M	>	0	and	set	δ	=	min{δ0	,	m0	/M	}.	p	6.6.3.	a)	By	L’Hˆopital’s	Rule,	k	1/(log	k)log	k	→	e0	=	1	as	k	→	∞	so	the	Root	Test	yields	r	=	1.	On	the	other	hand,	if	f	(x0	)	>	y0	then	choose	h0	>	0	such	that	x0	+	h0	<	b	and	f	(x0	+	h0	)	>	y0	.	Since	−	1	1	1	1	dw	=	−	2	dx	−	2	dy	−	2
dz	w2	x	y	z	we	have	dw/w	=	±p(w/x	+	w/y	+	w/z)	=	±p.	If	p	=	1/e,	then	the	terms	of	the	series	become	kk	1	>	√	k	e	·	k!	e	k	by	Stirling’s	Formula.	Consequently,	Vol	(S	◦φ)(Q))	≤	sn	(1+M	²)n	=:	C²	sn	=	C²	|Q|.	This	vector	is	parallel	to	(1,	1,	1),	the	normal	of	the	plane	x+y	+z	=	1,	if	and	only	if	x	=	y	=	−1/2.	18	Copyright	©	2010	Pearson	Education,	Inc.
14.3.7.	a)	Since	f	(x)	=	x	is	odd,	it	is	clear	that	ak	(f	)	=	0	for	k	=	0,	1,	.	By	the	Mean	Value	Theorem	and	hypothesis,	given	(x,	y)	∈	B3	(0,	0),	p	|f	(x,	y)	−	f	(0,	0)|	≤	|∇f	(c,	d)	·	(x,	y)|	≤	k(x,	y)k	p	for	some	(c,	d)	∈	L((x,	y);	(0,	0))	⊂	B3	(0,	0).	c	1−c	0	1	8.2.6.	By	Theorem	8.9vii,	a	normal	to	the	plane	Π	is	given	by	(b	−	a)	×	(c	−	a).	Proof.	It	is	also	easy	to
check	that	a	rectangle	Rj	satisfies	Rj	∩	E	6=	∅	if	and	only	if	x	+	Rj	∩	x	+	E	6=	∅).	e)	sin(x	+	π/2)	→	sin(π/2)	=	1	as	x	→	0−	and	3	cos	x	−	1	is	negative	as	x	→	0−	so	sin(x	+	π/2)/	3	cos	x	−	1	→	1/0−	=	−∞	as	x	→	0−.	d)	Let	x	∈	R.	13.5.1.	a)	Let	E	be	the	portion	of	the	disc	B2	(0,	0)	which	lies	in	the	first	quadrant.	Therefore,	set	R	=	y	2	,	Q	=	x,	and	R	=	y	2	.
1.2.4.	a)	|2x	+	1|	<	7	if	and	only	if	−7	<	2x	+	1	<	7	if	and	only	if	−	−	4	<	x	<	3.	Since	f	0	(x)	>	0	when	x	<	α	and	f	0	(x)	<	0	when	x	>	α,	Bα	:=	f	(α)	=	(α/e)α	is	the	absolute	maximum	of	f	on	(0,	∞).	It	follows	from	Lemma	7.11	that	fn	→	f	uniformly	on	[a,	b],	i.e.,	that	kfn	−	f	k	→	0	as	n	→	∞.	Suppose	0	<	xn	<	1.	But	since	f	([0,	1])	⊆	E,	U,	V	separates	f	([0,
1]),	a	contradiction.	Therefore,	x	+	E	is	a	Jordan	region	if	and	only	if	E	is.	Therefore,	fj	(x)	→	fj	(a)	as	x	→	a.	Since	kNφ	k	=	k(0,	0,	1)k	=	1,	we	have	ZZ	Z	g	dσ	=	1g(u,	v,	0)	d(u,	v).	Let	h(x)	=	g(x)	−	f	(x).	11.2.5.	At	any	(x,	y)	6=	(0,	0),	f	has	continuous	first	partials	,	hence	is	differentiable	by	Theorem	11.15.	1.3.7.	a)	Let	x	be	an	upper	bound	of	E	and	x	∈	E.
Observe	that	these	inequalities	also	hold	for	x	=	a.	Therefore,	the	pair	U,	V	separates	Eα0	,	a	contradiction.	10.3	Interior,	closure,	and	boundary.	,	it	follows	that	Z	π/2	∞	∞	X	X	(−1)k−1	(−1)k	f	(x)	dx	=	=	.	,	b)	−	(a,	a,	.	8.2.2.	a)	Since	(1,	0,	0,	0)	lies	on	the	plane,	the	constant	term	in	the	equation	of	this	plane	must	be	nonzero.	In	particular,	e	≤	2/(ae).
Also,	0	=	f	0	(x)	=	(1	−	α	log	x)/xα+1	implies	log	x	=	1/α,	i.e.,	x	=	e1/α	.	This	contradicts	the	fact	that	f	takes	[0,	1]	onto	[0,	1].	If	xn	→	x	then	xn	−	x	→	0,	i.e.,	f	(xn	−	x)	→	f	(0)	=	1	as	n	→	∞.	In	particular,	f	must	be	continuous	by	Theorem	7.9.	14.3.6.	a)	Using	the	change	of	variables	t	=	u	+	π/k,	dt	=	du,	and	a	sum	angle	formula,	we	have	Z	1	π	ak	(f	)	=	f
(t)	cos	kt	dt	π	−π	Z	π	Z	1	π	1	π	π	=	f	(u	+	)(cos	ku	cos	π	−	sin	ku	sin	π)	du	=	−	f	(u	+	)	cos	ku	du.	Thus	(x	−	δ,	x	+	δ)	⊆	f	−1	(I)	and	f	−1	(I)	is	open	by	definition.	Then	by	b)	and	c),	f	(x)	=	f	(	lim	qn	·	1)	=	lim	f	(qn	·	1)	=	lim	qn	f	(1)	=	mx.	,	n)	and	b	=	(b1	,	.	Thus	k=m	|	n	X	k=m	cos(kx)|	≤	1/|	sin(x/2)|	<	∞	k=1	61	Copyright	©	2010	Pearson	Education,	Inc.
It	follows	from	the	Comparison	Test	and	the	p-Series	Test	that	this	series	converges	for	all	p	>	1.	Clearly,	V1	,	.	In	particular,	it	suffices	to	prove	that	fj	(x)	→	fj	(a).	Since	the	coefficients	are	nonnegative,	(Sk	f	)(0)	=	k	j	`=1	`=1	a0	(f	)	X	a0	(f	)	X	+	a`	(f	)	≥	+	a`	(f	)	=	(Sj	f	)(0).	Hence	by	the	triangle	inequality,	kxk	k	is	bounded	(by	M	+	kak).	14.4
Convergence	of	Fourier	Series.	Therefore,	q	Fx2	+	Fy2	+	Fz2	=	|u0	(w)|	p	p	√	x2	/w2	+	y	2	/w2	+	z	2	/w2	=	|u0	(w)|	1	=	|u0	(	x2	+	y	2	+	z	2	)|.	4.4.10.	Hence	xux	−	yuy	=	xyf	0	(xy)	−	xyf	0	(xy)	=	0.	Taking	the	infimum	of	this	inequality	first	over	all	partitions	P1	of	[a,	c]	and	then	over	all	partitions	P2	of	[c,	b],	Rb	Rc	Rb	we	obtain	(U	)	a	f	(x)	dx	≤	(U	)	a	f
(x)	dx	+	(U	)	c	f	(x)	dx.	is	closed	as	Exercise	10.6.3	says	it	should;	f	−1	(−1,	1)	=	R	\	{x	:	x	=	(2k	+	1)π/2,	k	∈	Z}	is	open	as	Theorem	10.58	says	it	should;	f	−1	[−1,	1]	=	R	is	closed	as	Exercise	10.6.3	says	it	should.	Hence	by	the	Reflection	Principle,	inf	E	=	−	sup(−E)	∈	−(−E)	=	E.	,	x5	=	−.3176721	.	If	y	∈	Bc	(x)	then,	since	Bc	(x)	⊆	Br0	(x)	⊆	Br	(a),	it	is
clear	that	y	∈	Br	(a).	Since	y1	≥	f	(x1	)	and	y2	≥	f	(x2	),	we	also	have	y	≥	y	∗	.	interval	by	Theorem	7.43	and	x3	−	x	+	5	=	5	+	2(x	−	1)	+	3(x	−	1)2	+	(x	−	1)3	.	b)	By	Theorem	3.8	and	part	a),	lim	P	(x)	=	lim	(an	xn	+	·	·	·	+	a0	)	=	an	xn0	+	·	·	·	+	a0	=	P	(x0	).	Since	F	is	C	1	on	B1	(x0	),	we	can	choose	r	so	small	that	|((∇	×	F	)(x)	−	(∇	×	F	)(x0	))	·	n|	<	²	for
all	x	∈	Br	(x0	).	Set	½	f	(t)	:=	2	2	e−1/(t−a)	e−1/(t−b)	0	t	6=	0	t	=	0,	and	observe	by	Exercise	4.4.7	that	f	is	nonnegative	and	C	∞	on	R,	f	is	positive	on	(a,	b),	and	f	=	0	on	(a,	b)c	.	If	M	<	sup	E,	then	there	is	an	x	∈	E	such	that	M	<	x	≤	sup	E.	Since	f	and	g	are	bounded,	choose	C	>	0	such	that	|f	(x)|	≤	C	and	|g(x)|	≤	C	for	x	∈	[a,	b].	Thus	cos	x/	logp	x	is
improperly	integrable	on	[e,	∞)	for	all	p	>	0.	If	a	6=	0,	then	j=1	|xj	|	j=1	|xj	/a|	=	Pn	p	p	j=1	|xj	|	/a	=	1.	Hence,	there	is	an	ε0	>	0	and	kj	such	that	kf	(xkj	)	−	f	(a)k	≥	ε0	.	Since	{φj	}	is	a	partition	of	unity,	there	is	an	open	set	W	of	V	containing	H	and	an	N	∈	N	such	that	φj	=	0	on	W	for	all	j	≥	N	.	We	claim	that	E	∩	U	6=	∅.	Hence	w	:=	sup	E	∈	E.	Since	f
(x)	:=	π	2	cos	2x	is	continuous	on	R,	it	follows	that	its	Fourier	series	must	be	uniformly	Ces`aro	summable	to	f	on	compact	subsets	of	(0,	2π).	11.6.11.	Thus	by	induction,	x1	<	x2	<	.	13.1.4.	Let	C	=	(φ,	(0,	1])	where	φ(t)	=	(t,	sin(1/t))	and	set	tk	=	2/((2k	+	1)π)	for	k	∈	N.	0	152	Copyright	©	2010	Pearson	Education,	Inc.	b)	Let	P	be	a	partition	of	[a,	b],	P0
=	P	∪	{c},	P1	=	P0	∩	[a,	c],	and	P2	=	P0	∩	[c,	b].	Then	j=1	Br(xj	)	(xj	).	We	conclude	that	f	(±1/	2,	∓1/	2,	0)	=	−1/2	is	the	minimum	and	f	(±1/	6,	±1/	6,	∓2/	6)	=	1/6	is	the	maximum.	Since	we	assumed	xj	≥	0,	this	equation	can	be	rewritten	as	2xj	=	p|xj	|	λ.	If	t	∈	(α,	β),	then	by	the	Intermediate	Value	Theorem,	there	is	a	x	∈	[a,	b]	such	that	f	(x)	=	t,	i.e.,
t	∈	J.	(1	+	x2	+	y	2	)2	(1	+	x2	+	y	2	)2	11.3.9.	dw	=	2xy	dx	+	x2	dy	+	dz	so	∆w	≈	4(.01)	+	12	(−.02)	+	.03	=	.05.	a)	Let	E	be	sequentially	compact.	Then	fn	→	0	uniformly	on	R,	|gn	|	>	0	for	x	6=	0,	and	gn	(x)	→	x	uniformly	on	(0,	∞),	in	particular,	on	(0,	1),	as	n	→	∞.	Hence	by	Theorem	2.17,	L	≤	M	.	By	the	proof	of	Theorem	8.5,	the	only	place	an
inequality	slipped	in	is	on	the	left	side	of	(3);	all	other	steps	in	the	proof	were	identities.	x→0	x→0	k=n+2	k=n+2	33	Copyright	©	2010	Pearson	Education,	Inc.	and	Z	Z	c	xy	dx	+	(x	+	y)	dy	=	(a	+	y)	dy	=	−a(d	−	c)	−	C4	In	particular,	d	Z	(d	−	c)(b2	−	a2	)	=	2	ω	=	(b	−	a)(d	−	c)	−	C	µ	(d2	−	c2	)	.	Thus	|g(x)|	>	|x	−	1|.	If	it	passes	through	(−1,	−7),	then
3a2	+	6a	−	9	=	0,	i.e.,	a	=	1,	−3.	Thus	choose	N	so	large	that	x	∈	[a	+	δ,	b	−	δ]	and	n	≥	N	imply	|fn	(x)	−	f	(x)|	<	²/C.	If	E	o	6=	∅	then	there	exists	a	point	x	∈	E	o	⊂	E	such	that	Br	(x)	⊂	E	for	some	r	>	0,	i.e.,	Br	(x)	∩	E	c	=	∅.	It	follows	that	¯	¯	¯y	+	1¯	|x	−	1|2	|y	+	1|	¯.	dxn	)	=	dx1	.	4.5.11.	Then	x	∈	I	implies	e−kx	≤	e−ka	.	Since	the	Geometric	P∞	P∞
series	k=1	(1/4)k	converges,	it	follows	from	the	Comparison	Theorem	that	k=N	+1	ak	converges.	Set	δ	=	min{1/(7M	),	1}.	For	x	>	0	we	have	f	00	(x)	=	6x,	so	f	(h)	−	f	(0)	=	lim	6	6=	0.	¯∞	R∞	b)	By	definition,	0	e−xy	dx	=	−e−xy	/y	¯0	=	1/y.	Since	x	∈	[−1,	1]	we	must	take	the	minus	sign.	c)	If	E	is	connected	in	R	then	E	is	an	interval,	hence	E	o	is	either
empty	or	an	interval,	hence	connected	by	definition	or	Theorem	8.30.	In	particular,	Z	Z	z	P	=	0	Z	y	q(x,	y,	v)	dv	+	r(x,	u,	0)	du	and	Q=−	0	z	px	(x,	y,	v)	dv.	Since	H	is	convex,	it	follows	that	if	x	∈	E	and	khk	<	δ,	then	any	c	on	the	line	segment	between	x	+	h	and	x	satisfies	kDφ(c)	−	Dφ(x)k	<	².	Since	E	is	closed,	we	have	by	Theorem	9.8	that	sup	E	=
limk→∞	xk	∈	E.	Since	the	later	is	integrable	on	[0,	sin	1],R	it	follows	from	the	Comparison	Test	that	I	converges	absolutely.	b),c)	If	f	is	differentiable	at	x	=	1	then	for	any	x	∈	(0,	∞),	f	(x	+	h)	−	f	(x)	f	((x	+	h)/x)	1	=	=	h	h	x	µ	f	(1	+	(h/x))	h/x	¶	→	f	0	(1)	x	as	h	→	0.	c)	Suppose	u	is	not	nonnegative	on	H.	Choose	Vα	,	open	in	Rn	,	such	that	Uα	=	H	∩	Vα	.
Since	a	∈	f	−1	(I),	choose	by	hypothesis	a	δ	>	0	such	that	(a	−	δ,	a	+	δ)	⊂	f	−1	(I).	b)	Since	ì	x	≤	−1	ï	í	−2x	−	1	|x	+	1|	+	|x|	=	1	−1≤x≤0	ï	î	2x	+	1	x	≥	0,	the	graph	of	the	integrand	consists	of	two	trapezoids	on	either	side	of	a	square.	Since	kNφ	k	=	k(3u2	,	−1,	0)k	=	1	+	9u4	,	we	have	ZZ	Z	4	Z	2	g	dσ	=	S	0	u3	v	Z	p	2	1	+	9u4	dv	du	=	8	0	u3	p	1	+
9u4	du	=	0	4	(1453/2	−	1).	Thus	kB(x,	y)k2	=	x2	(sin2	θ	+	cos2	θ)	+	y	2	(sin2	θ	+	cos2	θ)	=	x2	+	y	2	=	k(x,	y)k2	.	Rc	Rb	5.3.6.	Take	the	derivative	of	0	=	α	a	f	(x)	dx	+	β	c	f	(x)	dx	with	respect	to	c.	Therefore,	the	limit	of	this	expression	does	not	exist,	i.e.,	f	is	not	differentiable	at	(0,	0).	Then	RN	R∞	|1/y	−	0	e−xy	dx|	=	|e−N	y	/y|	≤	e−N	<	²	since	y	≥	1.
b)	By	part	a)	and	the	Fundamental	Theorem	of	Calculus,	(S2N	f	)(x)	=	Z	N	−1	N	−1	4	X	sin(2k	+	1)x	4	xX	=	cos(2k	+	1)t	dt.	10.6.4.	a)	First,	notice	by	definition	and	the	fact	that	every	subspace	is	a	metric	space	in	its	own	right,	a	set	is	relatively	open	if	and	only	if	its	complement	is	relatively	closed.	√	The	constraint	implies	y	=	15/4,	i.e.,	y	=	±	15/2.	b)
If	nk	=	2k,	then	(−1)3nk	+	2	≡	(−1)6k	+	2	=	1	+	2	=	3	converges	to	3;	if	nk	=	2k	+	1,	then	(−1)3nk	+	2	≡	(−1)6k+3	+	2	=	−1	+	2	=	1	converges	to	1.	But	sin(2k	+1)x	is	periodic	of	period	2π.	Thus	by	the	Squeeze	Theorem,	fα	(x)	→	0	=	f	(0)	as	x	→	0,	i.e.,	fα	is	continuous	at	x	=	0.	Hence	this	series	diverges	by	the	Divergence	Test.	9.4.6.	By	Theorem
9.39,	f	(x,	y)	is	continuous	at	every	point	(x,	y)	which	satisfies	x	6=	y.	d)	Let	f	(x)	=	(x(log	x)p	)−1	for	x	>	0.	Since	these	two	atlases	are	compatible,	the	definition	of	C	p	functions	on	M	does	not	change	from	one	atlas	to	another.	3	12	4	6.2	Series	with	nonnegative	terms.	3!	3!	b)	Let	δ0	=	|x	−	π|.	n	n	k=1	Thus	(U	)	R1	0	f	(x)	dx	<	²	and	it	follows	that	(U	)
R1	0	f	(x)	dx	=	0.	g	−1	(−1,	1)	=	(−∞,	−1)	∪	(1,	∞)	∪	{0}	is	not	open	and	g	is	not	continuous;	g	−1	[−1,	1]	=	(−∞,	−1]	∪	[1,	∞)	∪	{0}	is	closed,	no	big	deal–note	that	Exercise	10.6.3	does	not	apply	since	g	is	not	continuous.	Then	V	⊆	∪x∈V	B²	(x).	f	0	(x)/α	=	1/f	0	(x),	i.e.,	(f	0	(x))2	=	α	for	each	x	∈	(a,	b).	Thus	the	original	limit	is	0	e	=	1.	,	sin(kπ/2)	=	1
when	k	=	1,	5,	.	If	w	∈	B²	(y)	then	kw	−	ak	≤	kw	−	yk	+	ky	−	ak	<	r	−	ky	−	ak	+	ky	−	ak	=	r	and	kw	−	ak	≥	ky	−	ak	−	kw	−	yk	>	ky	−	ak	+	s	−	ky	−	ak	=	s.	62	Copyright	©	2010	Pearson	Education,	Inc.	Since	{gn	}	is	decreasing	and	nonnegative,	it	follows	that	|gn	(x)|	≤	|g1	(x)|	≤	M	for	all	x	∈	E.	c)	(f	(a	+	h)	−	f	(a))/h	=	(−h/a(a	+	h))/h	=	−1/a(a	+	h)	→
−1/a2	as	h	→	0.	T	13.4.7.	a)	By	definition,	given	x	∈	S	there	is	a	parametrization	(φx	,	Ex	)	which	is	smooth	at	x,	i.e.,	such	that	Nφx	(u0	,	v0	)	6=	0	for	x	=	φ(u0	,	v0	).	Hence	it	follows	from	Theorem	11.8	that	Z	1	Z	1	Z	0	x	cos	y	x	1−u	9	√	√	√	lim	dx	=	dx	=	−	du	=	.	Let	n	>	N	,	x	>	0,	and	set	f	(x)	=	ex	−	(1	+	x/n)n	.	If	x	6=	0,	then	for	any	ρ	6=	0	we	have	f
(ρx	+	ρhej	)	−	f	(ρx)	ρk	f	(x	+	hej	)	−	f	(x)	=	lim	=	ρk−1	fxj	(x).	b)	Since	fy	is	differentiable	at	(a,	b),	we	have	lim	(u,v)→(0,0)	fy	(a	+	u,	b	+	v)	−	fy	(a,	b)	−	∇fy	(a,	b)	·	(u,	v)	=	0.	Since	a	>	1,	it	follows	from	definition	and	hypothesis	that	ax	≤	ap	<	aq	≤	ay	,	thus	ax	<	ay	.	Then	none	of	the	xj	’s	chosen	so	far	belong	to	Bs	(a).	b)	The	set	is	bounded,	but	not
closed	(since	(−2	+	1/n,	0)	belongs	to	the	set	but	its	limit,	(−2,	0)	does	not).	By	what	we	just	proved	and	(2),	m	−m	m−m	0	+	=	=	=	0.	E	13.3.6.	Parameterize	S	by	φ(x,	y)	=	(x,	y,	(x2	+y	2	)/2)	and	E	=	B√8	(0,	0).	0	0	b)	It’s	clear	for	n	=	0.	Fix	x	such	that	|x	−	a|	<	δ.	By	hypothesis,	given	²	>	0	choose	N	∈	N	such	that	|fk	(x)	−	f	(x)|	<	²/(2Vol	(E)	+	2)	for	k
≥	N	and	x	∈	E.	Thus	y	=	d)	By	completing	the	square,	y	=	2x	+	x√	2x	+	x2	is	a	semicircle	centered	at	(1,	0)	of	radius	1.	8.3.3.	a)	It	is	connected	(see	Remark	9.34	for	proof).	Thus	xk	is	bounded	in	k	for	all	j	if	and	only	if	kxk	k	is	bounded	in	k.	g	0	(1)	e	b)	By	the	Inverse	Function	Theorem,	c)	By	the	Product	Rule	and	the	Inverse	Function	Theorem,	(f	−1	g
−1	)0	(2)	=	f	−1	(2)(g	−1	)0	(2)	+	g	−1	(2)(f	−1	)0	(2)	1	1	1	=0·	0	+1·	0	=	.	It	follows	from	the	triangle	inequality	that	M	+	ρ(a,	b)	is	an	upper	bound	for	the	nonempty	set	{ρ(xn	,	a)	:	n	∈	N}.	Thus	n	>	499	≈	22.33,	i.e.,	n	≥	23.	If	x0	=	−1,	then	xn	=	−1	for	all	n.	((2k	−	2)/(2k	−	1))	·	(2k/k	2	)	<	2/k	→	0	as	k	→	∞.	3	c)	Fix	x	∈	[0,	1].	Then	W	:=	W1	∩	W2	is
open,	contains	H,	and	φj	ψk	=	0	on	W	for	j,	k	≥	N	:=	max{N1	,	N2	}.	Therefore,	|f	(x)|/|g(x)|	≤	M	.	c)	Ωf	(−h,	h)	=	2	for	all	h	6=	0	so	ωf	(0)	=	2.	2k	+	5	2k	+	5	k	+	5/2	Hence	it	converges	absolutely	by	Raabe’s	Test.	Similarly,	yn	=	yn2	<	xn	yn	=	yn+1	implies	xn+1	>	yn+1	>	yn	·	·	·	>	y1	.	0	5.5	Functions	of	Bounded	Variation.	1.5	Inverse	Functions	and
Images.	Hence	D(f	+	g)(x,	y)	=	[	x	cos	x	+	sin	x	+	y	x	+	sin	y	]	104	Copyright	©	2010	Pearson	Education,	Inc.	0	c)	If	p	<	q,	if	f	is	locally	integrable	on	(0,	1),	and	if	the	improper	integral	µZ	kf	kq	:=	1	¶1/q	|f	(x)|q	dx	0	is	finite,	then	the	improper	integral	kf	kp	is	also	finite.	,	xN	such	that	N	[	K⊂	Bδxj	(xj	).	Then	y	∈	(x	−	δ,	x	+	δ)	implies	|f	(x)	−	f	(y)|	<	²,
i.e.,	f	(y)	∈	(f	(x)	−	²,	f	(x)	+	²)	⊂	I.	Let	M	>	0	and	choose	N	∈	N	such	that	supk≥N	xk	≤	−M	.	Moreover,	if	q0	∈	Q	satisfies	q0	>	x	and	q	∈	Ex	,	then	q0	>	q,	so	by	hypothesis	aq	<	aq0	.	Since	[a,	b]	is	a	closed,	bounded	interval,	it	follows	from	Theorem	3.39	that	f	is	uniformly	continuous	on	[a,	b].	By	the	argument	of	Theorem	3.40,	this	definition	is
independent	of	the	sequence	xn	∈	D	chosen	to	approximate	x.	b)	Let	f	(x)	=	1/(x	logp	(x	+	1).	c)	Using	the	substitution	t	=	uq	,	we	obtain	Z	xq	L(xq	)	=	1	dt	=q	t	Z	1	x	du	=	qL(x).	9.4.2.	a)	f	(0,	1)	=	(0,	1)	is	open,	no	big	deal;	f	[0,	1)	=	[0,	1)	is	neither	open	nor	closed;	f	[0,	1]	=	[0,	1]	is	compact	and	connected	as	Theorems	9.29	and	9.30	say	it	should.	It
follows	from	the	Monotone	Convergence	Theorem	that	xn	→	a	as	n	→	∞.	Fix	k	∈	N	and	observe	by	Theorem	7.10	and	orthogonality	that	µ	¶	Z	1	π	k	ak	(f	)	=	lim	σN	(x)	cos	kx	dx	=	lim	1	−	ak	=	ak	.	Hence,	ρ(xn	,	a)	≤	ρ(xn	,	xnk	)	+	ρ(xnk	,	a)	≤	ε	for	k	large.	11.6.4.	Let	F	(x,	y,	u,	v)	=	(xu2	+	yv	2	+	xy	−	9,	xv	2	+	yu2	−	xy	−	7)	and	observe	that	µ	¶	∂(F1	,
F2	)	2ux	2vy	=	det	=	4uvx2	−	4uvy	2	=	4uv(x2	−	y	2	).	We	find	that	there	is	an	x0	∈	(c,	d)	such	that	±1	f	−1	(x)	−	f	−1	(x2	)	=	(f	−1	)0	(c)	·	(x	−	x2	)	=	0	−1	.	h	h	It	follows	that	T	=	[	f10	(x)	·	¸	2x	a)	T	=	écos	x	x	ù	e√	3	b)	T	=	ë	1/(3	x2	)	û	−2x	é	ù	0	ê	0	ú	ê	ú	c)	T	=	ê	0	ú	ë	û	2x	+	1	2x	−	1	0	.	k=N	161	Copyright	©	2010	Pearson	Education,	Inc.	0	d)	The	boundary
of	S	has	three	smooth	pieces,	C1	(given	by	y	=	0,	z	=	0,	0	≤	x	≤	1,	oriented	left	to	right),	C2	(given	by	y	=	(1	−	x)/2,	z	=	0,	0	≤	x	≤	1,	oriented	right	to	left),	and	C3	(given	by	x	=	0,	z	=	0,	0	≤	y	≤	1/2,	oriented	top	to	bottom).	ISBN-13:	978-0-132-29639-7	ISBN-10:	0-132-29639-X	An	Introduction	to	Analysis	Table	of	Contents	Chapter	1:	The	Real	Number
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x→a	f	(x)	lim	x∈I	x∈I	But	B	=	∞	implies	that	f	(x)/g(x)	is	positive	for	large	x.	Hence	by	Theorem	4.17i,	f	increases	on	[1,	∞).	Set	M	=	1/	ε.	Then,	µ	0	F	(φ(t))	·	φ	(t)	=	Therefore,	−	sin	t	cos	t	,	r	r	¶	·	(−r	sin	t,	r	cos	t)	=	sin2	t	+	cos2	t	=	1.	Therefore,	¯	f	(xn	)	¯	|f	(xn	)	−	f	(x)|	=	|f	(x)|	¯	−	1	¯=	|f	(x)|	|f	(xn	)f	(−x)	−	1|	=	|f	(x)|	|f	(xn	−	x)	−	1|	→	0	f	(x)	as	n	→	∞.
2.3.2.	If	x1	=	0	then	xn	=	0	for	all	n,	hence	converges	to	0.	Choose	qn	∈	Q	such	that	qn	→	x	as	n	→	∞.	19	Copyright	©	2010	Pearson	Education,	Inc.	6	6	6	c)	The	formula	holds	for	n	=	1.	Since	f	(x)	lies	above	the	chord,	the	maximum	of	F	occurs	at	the	endpoints.	√	−a	2/2	Hence,	e−x	≤	1/(xe)	for	all	x	>	0.	Therefore,	x	sin(1/x)	is	not	uniformly	continuous
on	(0,	1)	when	α	≤	0.	t	x2	x1	44	Copyright	©	2010	Pearson	Education,	Inc.	But	E	\	C	=	E	∩	Ac	.	If	(x0	,	y0	,	z0	)	does	not	lie	on	the	plane	Π	then	the	distance	h	from	Π	to	(x0	,	y0	,	z0	)	is	defined	to	be	kvk	where	v	=	(x0	−	x1	,	y0	−	y1	,	z0	−	z1	)	is	orthogonal	to	Π	and	(x1	,	y1	,	z1	)	lies	in	Π.	Similarly,	∞	X	∞	∞	k=2	k=3	X	X	1	1	1	≥	≡	p	k	log	(k	+	1)	(k	+
1)	log	(k	+	1)	k	logp	k	p	k=2	diverges	when	p	≤	1.	Since	these	are	compact	sets,	we	can	choose	V1	,	.	b)	The	set	is	“dumbbell”	shaped.	On	the	other	hand,	if	lim	inf	|ak	/ak+1	|	>	R	then	lim	sup	|ak+1	/ak	|	<	1/r	for	some	r	>	R,	i.e.,	|ak+1	/ak	|	<	1/r	=	rk	/rk+1	for	k	large.	Fix	r	>	0	and	let	x1	∈	E	∩	Br	(a)	\	{a}.	Hence	the	class	of	algebraic	numbers	of
degree	n	is	a	countable	union	of	finite	sets,	hence	countable.	c)	If	A	and	B	are	as	in	part	a),	then	∂(A∪B)	=	{0,	2}	6=	{0,	1,	2}	=	∂A∪∂B	and	∂(A∩B)	=	∅	6=	{1}	=	∂A∩∂B.	It	is	even	easier	for	closed	sets.	By	Exercise	5.6.4,	φ(x)	=	x	µZ	1	0	¶1/p	µ	µZ	|f	(x)|p	dx	=	φ	1	q/p	0	0	is	convex	on	[0,	∞).	Indeed,	the	vertical	path	x	=	0	yields	g(0,	y)	=	f	(0)(y	+	1)	→	1
as	y	→	0	but	the	horizontal	path	y	=	0	yields	g(x,	y)	=	f	(x)(0	+	1)	→	0	as	x	→	0.	b)	By	the	Mean	Value	Theorem,	f	(x,	y)	−	f	(a,	b)	=	g(1)	−	g(0)	=	g	0	(t)	=	fx	(c,	y)(x	−	a)	+	fy	(a,	d)(y	−	b)	for	some	t	∈	(0,	1),	where	c	=	tx	+	(1	−	t)a	and	d	=	ty	+	(1	−	t)b.	7.2.10.	If	a	≥	b	then	a	=	(	a)2	≥	(	b)2	=	b,	a	contradiction.	4.1.5.	a)	1	=	y	0	=	1	+	cos	x	implies	cos	x	=
0,	i.e.,	x	=	(2k	+	1)π/2	for	k	∈	Z.	b)	Let	ε	>	0	and	choose	M	∈	R	such	that	x	>	M	implies	|f	(x)	−	L|	<	ε	and	|h(x)	−	L|	<	ε.	Since	Ã	(*)	fn	(x)	=	(fnn	(x))1/n	≤	n	X	!1/n	fkn	(x)	≤	n1/n	fn	(x)	k=1	Pn	1/n	and	n1/n	→	1	as	n	→	∞,	it	is	clear	by	the	Squeeze	Theorem	that	(	k=1	fkn	(x))	converges	pointwise	to	f	(x)	as	n	→	∞.	Let	C	=	(φ,	[a,	b])	be	a	closed	smooth
curve	and	φ	=	(ψ,	σ).	Then	by	Theorem	10.34,	Br	(x)	⊆	E	o	so	x	∈	E	o	,	a	contradiction.	In	particular,	n	=	(Fx	(a,	b,	c),	Fy	(a,	b,	c),	Fz	(a,	b,	c))	given	by	n	is	a	normal	to	the	tangent	plane	at	(a,	b,	c).	Fix	x	∈	[0,	1]	and	choose	k0	so	large	that	1/k0	<	a.	For	each	j	choose	a	rectangle	Rj	such	that	xj	∈	Rj0	and	|Rj	|	<	²/(2N	).	d)	Let	a	=	f	(1)	and	fix	x	∈	R.	Since
a	≤	b	and	b	≤	a	+	c,	|a	−	b|	=	b	−	a	≤	a	+	c	−	a	=	c.	11.7.2.	a)	0	=	fx	=	2x	+	2	and	0	=	fy	=	−2y	implies	x	=	−1	and	y	=	0.	If	a	=	−b	=	1	and	n	=	2,	then	(a	+	b)n	=	0	is	NOT	greater	than	b2	=	1.	Indeed,	L((0,	1);	(1,	1))	intersects	E	at	only	two	points.	Thus	n	≥	N	implies	√	√	√	|1	+	π/	n	−	1|	≡	|π/	n|	≤	π/	N	<	ε.	Thus	83	Copyright	©	2010	Pearson
Education,	Inc.	p	√	6.3.4.	Notice	that	k	|ak	xk	|	=	k	ak	|x|	→	a	|x|	as	k	→	∞.	x0	=	2.	Then	y	2	+	9z	2	=	9	sin2	t	+	9	cos2	t	=	9.	10.3.8.	a)	If	V	is	open	in	Y	,	then	given	x	∈	V	there	is	ball	BY	(x)	=	BX	(x)	∩	Y	,	open	in	Y	,	which	contains	x	and	is	a	subset	of	V	.	b)	Suppose	A	is	clopen	and	∅	⊂	A	⊂	E.	Hence	by	Remark	6.40,	|sn	−	s|	is	dominated	by	(1/3)n	/(2/3)
=	(1/2)(1/3)n−1	.	14.5.2.	Since	the	coefficients	of	the	second	formal	integral	are	dominated	by	M/k	2	,	it	follows	from	the	Weierstrass	M-Test	that	this	series	converges	uniformly	on	R.	4.5.10.	Let	σ(y)	=	(y	−	g(x))/δ,	h	=	σ	◦	g,	and	V	=	h−1	(Bδ	(h(x))).	Since	∂H	is	compact,	it	can	be	covered	by	finitely	many	such	balls,	say	B1	,	.	x2	+	y	2	3	x2	+	y	2
(x,y)→(0,1)	4	d)	The	domain	of	f	is	all	(x,	y)	∈	R2	such	that	(x,	y)	6=	(1,	1).	Then	PN	(x)f	(x)	→	f	2	(x)	uniformly	on	[a,	b]	as	N	→	∞	and	we	have	by	part	a)	and	Theorem	7.10	that	Z	Z	b	0	=	lim	N	→∞	b	PN	(x)f	(x)	dx	=	a	f	2	(x)	dx.	k(x,	y)k	kB(x,	y)k	k(x,	y)k	kB(x,	y)k	8.2.10.	Thus	ρ(x,	a)	≥	²	for	all	x	∈	E.	(3k	−	2))	this	series	converges	absolutely	by	the	Ratio
Test.	,	αN	such	that	N	[	H⊂	f	−1	(Vαj	).	Thus	Ã	!	√	√	s	+	s2	−	4t	s	−	s2	−	4t	−1	f	(s,	t)	=	,	.	∂E	E	E	If	RR	u	is	harmonic	on	E,	then	the	integral	on	the	left	is	zero.	My	calculator	will	not	show	more	than	nine	places,	so	I	cannot	tell	how	many	more	digits	we	picked	up	going	from	x3	to	x4	.	Note	that	Cα	→	∞	as	α	→	0+	and	Cα	→	0	as	α	→	∞.	4.4.2.	a)	If	f	(x)	=
log	x,	then	f	(n)	(x)	=	(−1)n−1	(n	−	1)!/xn	.	8.4.3.	If	A	⊆	B	then	Ao	is	an	open	set	contained	in	B.	Since	|f	0	(c)|	≤	1,	it	follows	that	|f	(x)|	≤	|f	(x)	−	1|	+	1	≤	|x|	+	1	for	all	x	∈	R.	N	→∞	π	−π	N	→∞	N	+1	Similarly,	a0	(f	)	=	a0	and	bk	(f	)	=	bk	for	k	∈	N.	A	portion	of	the	plane	x	+	y	−	z	=	1	lies	above	the	first	quadrant	of	the	xy	plane	and	slants	away	from	the
z	axis,	so	there	are	two	points	where	the	tangent	plane	to	H	is	parallel	to	x	+	y	−	z	=	1,	one	on	the	“front”	side	of	H	lying	above	the	xy	plane,	and	one	on	the	“back”	side	of	H	lying	below	the	xy	plane.	Then	by	Theorem	9.15	(the	limit	of	the	product	is	the	product	of	the	limits),	f1j1	(x)	.	Hence	by	Theorem	12.65,	ZZ	ZZ	g(ψ(s,	t)kNψ	(s,	t)k	=	g(φ(τ	(s,	t)))|
∆τ	(s,	t)|	kNφ	(τ	(s,	t))k	B	Z	ZB	=	g(φ(u,	v))kNφ	(u,	v)k.	Since	the	plane	contains	φ(0)	=	(0,	0,	0,	1)	and	φ(1)	=	(1,	1,	1,	1),	we	have	d	=	1	and	a	+	b	+	c	+	d	=	1,	i.e.,	a	+	b	+	c	=	0.	b)	Let	a	∈	R.	Then	xn	<	0	so	|xn	|	=	−xn	>	0.	On	the	other	hand,	if	E	+	=	{(x,	y)	:	y	>	0}	and	E	−	=	{(x,	y)	:	y	<	0},	then	on	E	+	,	|1	−	ey/k	|	=	ey/k	−	1	≤	eM/k	−	1	→	0
uniformly	as	k	→	∞,	and	on	E	−	,	|1	−	ey/k	|	=	1	−	ey/k	≤	1	−	e−M/k	→	0	uniformly	as	k	→	∞.	Since	D	is	dense,	choose	xn	∈	D	such	that	xn	→	x.	µ	¶	n	n	n−1	X	X	X	ak	bk	ck	−	ck+1	cm	−	cn+1	1	1	=	=	+	(ck	−	ck+1	)	−	.	Thus	given	M	>	0,	choose	N	so	large	that	SN	≥	M	.	Clearly	(see	the	proof	of	Remark	1.39),	f	takes	E	onto	[0,	1].	d)	Let	m	=	f	(1)	and	fix
x	∈	R.	Then	there	is	a	pair	of	open	sets	U,	V	which	separates	E.	Then	F	·	φ0	=	(t3	,	t2	−	t)	·	(1,	2t)	=	3t3	−	2t2	.	Given	ε	>	0,	choose	N	such	that	n	≥	N	implies	|fn	(x)−f	(x)|	<	ε/C	for	x	∈	[a,	b].	Taking	the	limit	of	this	inequality	as	n	→	∞	establishes	the	given	inequality.	e)	Since	cos	x	is	periodic	with	maximum	1	and	minimum	−1,	f	(E)	=	[−1,	1].	As	t	→
−1−,	x	→	∞,	y	→	−∞,	y/x	=	t	→	−1,	and	dy/dx	→	−1.	Since	f	(x)	>	0	for	all	x	and	g	is	continuous	on	(0,	∞),	it	is	clear	that	f	and	g	◦	f	are	continuous	but	g	is	not.	,	xn	)	+	(y1	,	.	2(b	−	a)	2(b	−	a)	117	Copyright	©	2010	Pearson	Education,	Inc.	Since	x	∈	Eα0	,	we	also	have	U	∩	Eα0	6=	∅.	How	big	can	the	volume	of	S	◦	φ(Q)	be?	Hence	w	∈	V	and	V	is	open	by
definition.	But	by	part	a)	and	symmetry,	if	f	is	unbounded	on	[a,	b],	then	there	are	tj	∈	[xj−1	,	xj	]	such	that	|S(f,	P,	tj	)|	>	|I(f	)|	+	1,	a	contradiction.	Thus	this	set	is	countable	by	definition.	,	n}	\	A	and	observe	that	Mj	(g)	≤	C	for	all	j	and	Mj	(g)	=	Mj	(f	)	for	all	j	∈	B.	Hence	by	definition,	kCk	≥	k	X	kφ(tj	)	−	φ(tj+1	)k	≥	2k	j=1	for	each	k	∈	N,	i.e.,	kCk	=	∞.
Thus	by	Taylor’s	Formula,	exy	=	1	+	xy	+	ecd	((dx	+	cy)4	+	12(dx	+	cy)2	xy	+	12x2	y	2	)	4!	for	some	(c,	d)	∈	L((x,	y);	(0,	0)).	√	5.4.10.	As	in	Exercise	13.3.1b,	kNψ	k	=	9|	cos	v|,	so	ZZ	Z	π/2	Z	2π	g	dσ	=	9	S	(3	cos	u	cos	v	+	3	sin	u	cos	v	+	3	sin	v)	cos	v	dv	du	π/4	Z	0	π/2	=	54π	sin	v	cos	v	dv	=	π/4	27π	.	11.3.7.	Define	T	∈	L(Rn	;	Rm	)	by	=	T	(y)	:=	f
(a)×(Dg(a)(y))−g(a)×(Df	(a)(y)).	a)	Let	g(t)	=	a	+	tu	and	h(t)	=	f	◦	g(t).	r→0	πr	Br	(x0	)	Thus	u	is	harmonic	at	x0	.	If	B	were	at	most	countable,	then	its	subset	f	(A)	would	be	at	most	countable	by	Theorem	1.41,	i.e.,	there	is	a	function	g	which	takes	f	(A)	onto	N.	We	conclude	that	lim	n→∞	f	(βn	)	−	f	(αn	)	=	γ	=	f	0	(x).	Then	a	−	1	>	1	so	1	<	a	−	1	<	a	−	1
by	(6).	Set	f	(x)	=	|x|.	2	2	c)	This	curve	√has	two	pieces:	C1	where	x	≥	0,	and	C2	where	x	≤	0.	8.3.5.	By	completing	the	square,	{x2	−	4x	+	y	2	+	2	<	0}	=	B√2	(2,	0).	−1	d)	Let	E	be	the	ellipsoid	{(x,	y,	z)	:	x2	/a2	+	y	2	/b2	+	z	2	/c2	≤	1}.	RN	b)	Clearly,	0	f	(x)	dx	=	1/2	+	1/4	+	·	·	·	+	1/2N	−1	=	1	−	1/2N	−1	→	1	as	N	→	∞.	,	N	}	and	observe	by	the	choice
of	δ	that	x∗	,	y	∗	∈	[xk−1	,	xk	]	imply	that	|f	(x∗	)	−	f	(y	∗	)|	<	².	By	adding	the	Lagrange	equations	and	using	the	second	constraint,	we	see	that	µ	=	(x	+	y)/3.	hence	Z	Z	π/2	xy	ds	=	ab	cos	t	sin	t	C	p	a2	+	(b2	−	a2	)	cos2	t	dt.	5.4.0.	a)	False.√Let	a	=	0,	b	=	1.	9.6.3.	Given	²	>	0,	choose	M	so	large	that	|f	(x)|	<	²/2	for	|x|	>	M	.	Then	there	exists	a	pair	of
open	sets	U,	V	which	separates	E.	56	Copyright	©	2010	Pearson	Education,	Inc.	,	RM	}	be	a	grid	such	that	x,	y	∈	Rj	implies	kx	−	yk	<	δ	and	each	Qk	is	a	union	of	Rj	’s.	R1	0	f	(x)	dx	=	0.	118	Copyright	©	2010	Pearson	Education,	Inc.	j=1	Let	x	∈	X.	Thus	Z	ω=	S	(xz,	1,	z)	·	(x/z,	y/z,	1)	d(x,	y)	Bb	(0,0)	Z	Z	p	r	sin	θ	(r2	cos2	θ	+	√	+	a2	−	r2	)r	dr	dθ	2	2	a	−r
0	0	Z	b	Z	bp	π	=π	r3	dr	+	2π	a2	−	r2	r	dr	=	(3b4	+	8a3	−	8(a2	−	b2	)3/2	)	.	2.4.0.	a)	False.	It	follows	that	{x	:	(f	g)(x)	6=	0}	⊆	{x	:	f	(x)	6=	0}	∩	{x	:	g(x)	6=	0}.	If	0	<	x1	<	1,	then	by	1.4.1c,	xn	is	decreasing	and	bounded	√	the	Monotone	Convergence	Theorem.	Both	f	and	g	are	bounded	on	[a,	b]	by	the	Extreme	Value	Theorem.	,	xn	+	yn	)	=	(y1	+	x1	,	.	,
f	(xN	)},	so	f	(X)	is	finite,	say	X	=	{y1	,	.	Dividing	top	and	bottom	by	xm	,	we	have	P	(x)	an	xn−m	+	an−1	xn−m−1	+	·	·	·	+	a0	/xm	=	.	c)	g(x)	=	−1/x	is	increasing	and	continuous	on	(0,	1)	but	not	uniformly	continuous	there.	b)	See	the	proof	of	Theorem	12.39.	Then	xk	→	∞,	i.e.,	1/xk	→	0,	as	k	→	∞.	If	k	<	0	then	nq	is	a	root	of	the	polynomial	n−k	xj	−	1.
Let	E	:=	{(x,	y)	:	y	≥	f	(x)}	and	suppose	(x1	,	y1	),	(x2	,	y2	)	∈	E.	Thus	it	follows	from	the	hypothesis	f	(a)	=	g(a)	=	0	that	kf	(x)k	kf	(x)	−	f	(a)k/|x	−	a|	kDf	(a)k	=	→	kg(x)k	kg(x)	−	g(a)k/|x	−	a|	kDg(a)k	as	x	→	a.	P∞	b)	By	part	a),	k=1	the	roles	of	k	and	j,	we	obtain	the	reverse	inequality.	Then	(f	/g)00	=	0	but	g(a)f	00	(a)	+	f	(a)g	00	(a)	4a2	=	6	3	g	(a)	a	is
not	zero.	b)	implies	c).	Thus	f	(1)	=	5,	f	0	(1)	=	2,	f	00	(1)	=	6,	f	(3)	(1)	=	6,	and	f	(k)	(1)	=	0	for	all	k	≥	3.	Since	3	=	log(x2	+	x	+	1)	implies	√	3	x	=	1	±	e	−	1,	we	also	have	p	p	f	−1	(E)	=	[1	−	e3	−	1,	1)	∪	(1,	1	+	e3	−	1].	10.4.4.	Suppose	A	is	uncountable.	Hence	by	the	Sequential	Characterization	of	Limits,	f	(x)g(x)	→	0	as	x	→	a.	c)	Since	∇f	=	(y,	x,	cos	z)
=	(0,	1,	0)	at	(1,	0,	π/2),	and	the	equation	of	the	tangent	plane	is	w	=	f	(1,	0,	π/2)	+	∇f	(1,	0,	π/2)	·	(x	−	1,	y,	z	−	π/2),	we	have	w	=	y	+	1.	Thus	k	>	N	implies	k(1/k,	1	−	1/k	2	)	−	(0,	1)k	<	ε.	Then	x0	+	h0	∈	E	so	x0	cannot	be	the	supremum	of	E.	By	Green’s	Theorem,	Z	ZZ	(y	2	−	2yf	0	(x2	+	y	2	))	dA	F	·	T	ds	=	−	C	E	2	Z	2π	Z	=	1	(2r2	f	0	(r2	)	sin	θ	−	r3
sin2	θ)	dθ	dr	0	Z	2	=0−π	r3	dr	=	1	−15π	.	0	δ	Rδ	Now	(s	−	a)	0	e−(s−a)t	dt	=	1	−	e−(s−a)δ	→	1	as	s	→	∞.	By	part	a),	there	is	an	a	∈	E	such	that	xnk	→	a.	Since	this	last	quotient	converges	to	zero	as	N	→	∞,	it	follows	that	SN	rN	→	0	as	N	→	∞.	2.4.3.	Suppose	xn	and	yn	are	Cauchy	and	let	ε	>	0.	By	the	Sequential	Characterization	of	Limits,	f	(xn	)	→	L
and	g(xn	)	→	M	as	n	→	∞.	Since	0	<	sin(x/n)	≤	x/n,	it	follows	by	rationalizing	the	numerator	that	¯	¯	¯	sin(x/n)	+	x	+	1	−	(x	+	1)	¯	p	√	¯	¯	|	sin(x/n)	+	x	+	1	−	x	+	1|	=	¯	p	√	¯	¯	sin(x/n)	+	x	+	1	+	x	+	1	¯	x/n	3	≤	0	such	that	|g(x)|	≤	C	for	all	x	∈	[a,	b].	Since	f	0	is	increasing,	f	0	(c−)	and	f	0	(c+)	exist	by	Theorem	4.18.	Since	y	=	4	−	x2	−	z	2	and	y	=	5	−	4x	−
2z	imply	(x	−	2)2	+	(z	−	1)2	=	4,	the	projection	of	E	onto	the	xz	plane	is	the	disc	D	centered	at	(2,	0,	1)	of	radius	2.	By	parts,	Z	e	Z	¯e	f	0	(x)	log	x	dx	=	log	xf	(x)	¯1	−	1	e	1	f	(x)	dx	>	f	(e)	−	f	(e)	=	0.	Then	1	<	a	−	2	<	3	so	1	<	a	−	2	<	a	−	2	by	(6).	Therefore,	f	(E)	=	(−4,	5).	Hence	it	follows	from	the	Squeeze	Theorem	that	xn	→	x	as	n	→	∞.	Therefore,	Sf
converges	uniformly	on	R	by	the	Weierstrass	M-Test	and	absolutely	on	R	by	the	Comparison	Test.	This	means	that	there	is	an	open	set	V	in	Rn	such	that	A0	=	V	∩	E.	k	A	similar	argument	shows	|bk	(f	)|	≤	ω(f,	π/k).	Since	a1/n	→	1	as	n	→	∞	(see	Example	2.21),	choose	an	N	∈	N	such	that	|a1/N	−	1|	≤	ε/ax0	.	The	limit	does	not	exist	because	f	(n)	→	1	but	f
(n	+	1/2)	→	0	as	n	→	∞.	To	examine	the	case	when	(x,	y)	=	(0,	0),	notice	first	that	fx	(0,	0)	=	limh→0	(f	(h,	0)	−	f	(0,	0))/h	=	limh→0	h3−2α	=	0	because	3	−	2α	>	0.	Wait	a	moment	and	try	again.	Corresponding	equations	these	tangent	planes	are	x	+	y	−	z	=	1	and	x	+	y	−	z	=	−1.	Conversely,	suppose	σN	→	f	uniformly	on	R.	In	particular,	f	takes	E	onto
[0,	1].	Since	that	case	has	been	proved	in	the	text,	it	follows	that	g(x)	g	0	(x)	=	lim	0	=	0.	By	inspection,	it	does	not	converge	absolutely	when	|p|	=	1.	Then	by	Theorem	2.35	there	is	a	subsequence	kj	such	that	xkj	→	0,	i.e.,	1/xkj	→	∞	as	j	→	∞.	Hence	set	hy	=	r(x,	y,	0)	and	g	=	0.	Then	aN	+1	≤	a2N	≤	1/4,	aN	+2	≤	a2N	+1	≤	1/16,	and	in	general,	aN	+k	≤
1/4k	for	k	=	1,	2,	.	Since	sin2	θ	+	cos2	θ	=	1,	it	follows	that	the	critical	points	are	(2,	0),	(−2,	0),	and	(−4/5,	±√	21/5.	C	C(x,y)	D(x,y)	C(x,y)	D(x,y)	The	converse	is	proved	similarly.	Taking	the	limit	of	this	inequality	as	r	→	1−,	we	conclude	that	L	≥	M	for	all	M	>	0,	i.e.,	L	=	∞,	a	contradiction.	Suppose	first	that	f	0	>	0	on	[a,	b].	9.3.3.	a)	Since	¯	3	¯	¯	x	−
y3	¯	x2	y2	¯	¯	¯	x2	+	y	2	¯	≤	|x|	x2	+	y	2	+	|y|	x2	+	y	2	≤	|x|	+	|y|	→	0	as	(x,	y)	→	(0,	0),	the	limit	exists	and	is	0.	d)	Let	φ1	(t)	=	(t,	0,	0),	I1	=	[0,	1];	φ2	(t)	=	(t,	2	−	2t,	0),	I2	=	[0,	1];	and	φ3	(t)	=	(0,	t,	0),	I3	=	[0,	2].	Thus	n	≥	N	implies	n	−	3n2	=	n(1	−	3n)	≤	−2n	≤	−2N	<	M	.	b)	By	definition,	fn	→	f	in	C[a,	b]	if	and	only	if	given	ε	>	0	there	is	an	N	∈	N
such	that	n	≥	N	implies	sup	|fn	(x)	−	f	(x)|	<	ε.	Then	|fnk	(x)	−	f	(x)|	→	0	as	k	→	∞	for	each	x	∈	[0,	1].	Thus	by	the	Comparison	Theorem	and	u-substitution,	Z	1	Z	1	Z	f	(1/x2	)	1	2	5	2	f	(1/x	)	dx	≤	dx	=	f	(u)	du	=	.	Then	(n	+	1)3	=	n3	+	3n2	+	3n	+	1	≤	3n	+	2	·	3n	=	3n+1	.	1.2.3.	a)	By	definition,	|a|	+	a	a	−a	=	−	2	+	µ	−	and	a+	+	a−	=	|a|	+	a	+	2	µ	|a|	−	a
2	|a|	−	a	2	¶	=	¶	=	2a	=a	2	2|a|	=	|a|.	Since	φ0	(t)	=	(cos	t,	−	sin	t,	0),	it	follows	from	Stokes’s	Theorem	that	ZZ	Z	2π	F	·	n	dσ	=	S	(36	cos	t	−	sin2	t)	dt	=	−π.	Then	x	>	M	implies	|	sin(x2	+	x	+	1)/f	(x)|	≤	1/f	(x)	<	ε.	Notice	that	|ak	|2	=	a2k	and	the	sequence	xn	is	monotone	increasing.	Suppose	3	<	xn	<	5.	0	√	b)	This	curve	forms	a	“script	vee”	from	(−1,
1)	through	(0,	0)	to	(1,	1).	Then	E	is	a	surface	whose	boundary	equals	∂S,	hence	by	Stokes’s	Theorem,	ZZ	ZZ	curl	F	·	n	dσ	=	curl	F	·	n	dσ.	4.4.11.	2	d)	Let	M	∈	R	satisfy	M	≤	0.	The	series	diverges	at	x	=	1/e	because	its	terms	satisfy	nn	/(n!en	)	≥	1/(ne)	by	part	a).	Therefore,	Z	Z	1	√	x	Z	Z	x3	Vol	(E)	=	1	dy	dz	dx	=	x2	0	0	0	√	1	x3	(	x	−	x2	)	dx	=	.	If	α	6=	0,
then	there	is	an	N	∈	N	such	that	n,	m	≥	N	implies	|xn	−	xm	|	<	ε/|α|.	Let	f	(x)	=	0	for	all	other	points	x	∈	[0,	1].	a)	Since	n	X	Z	log	k	=	log(n!)	and	n	log	x	=	n	log	n	−	n	+	1,	1	k=1	we	have	by	Theorem	6.35	that	0	≤	log(n!)	−	n	log	n	+	n	−	1	≤	log	n.	−π/2	c)	If	(φ,	E)	is	the	parameterization	given	in	Example	13.31,	then	kφu	×	φv	k	=	k(b(a	+	b	cos	v)	cos	u
cos	v,	b(a	+	b	cos	v)	sin	u	cos	v,	b(a	+	b	cos	v)	sin	v)k	=	b|a	+	b	cos	v|.	Then	f	0	(x)	=	cos	x,	f	00	(x)	=	−	sin	x.	Therefore,	·	A=	a	b	4	4	−1	1	¸	−π	.	Copyright	©	2010	Pearson	Education,	Inc.	Therefore,	µ	¶	µ	¶	(−1)n	x4m−1	(−1)n	x4m+1	x	−	···	+	<	sin	x	<	x	−	·	·	·	+	.	11.7.3.	a)	The	Lagrange	equations	are	1	=	2xλ	and	2y	=	2yλ.	4.3.11.	Solving	for	the
integral,	we	obtain	0	e−st	cos	bt	dt	=	s/(s2	+	b2	).	0	13.5.5.	a)	Let	P	=	−y	and	Q	=	x.	9.1.1.	a)	Let	ε	>	0	and	choose	(by	Archimedes)	an	N	∈	N	such	that	k	>	N	implies	1/k	<	ε/2.	14	Copyright	©	2010	Pearson	Education,	Inc.	The	boundary	is	y	=	x3	,	z	=	0,	4,	and	(0,	0,	z),	(2,	8,	z),	for	0	≤	z	≤	4.	Indeed,	if	not,	e.g.,	if	kxk	k	→	∞	for	some	xk	∈	E,	then
choose	(by	sequential	compactness)	a	convergent	subsequence	of	xk	,	say	xkj	.	b)	The	radius	of	convergence	of	this	power	series	is	1/e.	Hence	a	separation	can	be	made,	e.g.,	by	using	the	open	sets	V	=	{(x,	y)	:	x	<	−1}	and	U	=	{(x,	y)	:	x	>	−1},	and	applying	Remark	8.29.	0	c)	If	S1	and	S2	are	disjoint	“concentric”	surfaces	which	do	not	contain	the
origin,	and	the	normals	of	S1	and	S2	both	point	away	from	the	origin,	then	ZZ	ZZ	F	·	n	dσ	=	F	·	n	dσ	S1	S2	for	all	C	1	functions	F	which	satisfy	F	=	curl	G	for	some	C	2	function	G	on	R3	\	{(0,	0,	0)}.	In	particular,	the	original	series	converges	uniformly	on	[a,	b]	by	that	|D	the	Dirichlet	Test.	If	it	holds	for	n	then	n+1	X	(2k	−	1)2	=	k=1	n(4n2	−	1)	2n	+	1
+	(2n	+	1)2	=	(2n2	+	5n	+	3)	3	3	2n	+	1	(n	+	1)(4n2	+	8n	+	3)	(2n	+	3)(n	+	1)	=	3	3	(n	+	1)(4(n	+	1)2	−	1)	=	.	b)	The	proof	of	Remark	12.33	depends	only	on	three	properties	satisfied	by	the	function	f	:	i)	f	(x,	y0	)	is	zero	R1	R1R1	off	[2−n−1	,	2−n+1	),	ii)	0	f	(x,	y0	)	dx	=	0,	and	iii)	0	0	f	(x,	y)	dy	dx	=	1.	By	hypothesis,	fn	→	f	uniformly	on	[a	+	δ,	b	−	δ].
14.4.2.	a)	By	Example	14.8,	this	is	the	Fourier	series	of	x.	a	Rb	Rb	We	conclude	that	g	is	integrable	and	a	g(x)	dx	=	a	f	(x)	dx.	Set	f	=	k=1	fxj	and	V	=	j=1	Jrj	(xj	).	Thus	by	hypothesis,	¯	¯	¯	f	(0	+	h)	−	f	(0)	¯	|f	(h)|	¯	¯=	≤	|h|α−1	.	b)	If	(a,	b,	c)	∈	H	and	(0,	0,	1)	·	(−a,	−b,	c)	=	0	then	c	=	0	and	a2	+	b2	=	1.	This	works	since	Bε/2	(x)	⊂	Bε	(x).	In	particular,	x
2	−	x	≥	22	−	2	>	0,	i.e.,	2x	>	x	for	x	≥	2.	n!	1	n!	(n	−	1)!	k!	k=0	R∞	In	particular,	(1/n!)	1	xn	e−x	dx	→	e−1	e	=	1	as	n	→	∞.	b)	The	inequality	holds	for	n	=	1.	Let	N	∈	N	be	so	large	that	|x|	≥	N	implies	f	(x)	>	f	(0).	√	Taking	the	limit	of	this	last	inequality	as	k	→	∞,	we	see	that	lim	supk→∞	k	ak	≤	r0	.	Otherwise,	given	ε	>	0	use	Definition	2.1	to	choose	an
N	∈	N	such	that	n	≥	N	implies	|bn	|	≡	bn	<	ε/|C|.	Thus	it	remains	to	prove	that	iii)	implies	i).	b)	By	Theorem	8.37	or	10.40,	∂(E1	∩	E2	)	⊆	∂E1	∪	∂E2	.	On	the	other	hand,	∪x∈V	B²	(x)	⊆	V	since	each	B²	⊆	V	.	12	0	0	2π	b	=	d)	If	φ(u,	v)	=	((v/2)	cos	u,	(v/2)	sin	u,	v)	then	Nφ	=	((v/2)	cos	u,	(v/2)	sin	u,	−v/4)	points	away	from	the	z	axis.	On	the	other	hand	{n}
is	a	sequence	in	R	which	has	no	convergent	subsequence.	These	steps	are	reversible.	√	14.3.2.	If	f	were	continuous	and	|ak	(f	)|	≥	1/	k,	then	∞	X	|ak	(f	)|2	≥	k=1	∞	X	1	=∞	k	k=1	which	contradicts	Bessel’s	Inequality.
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